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Abstract. Synthetic aperture radar (SAR) is a tomographic sensor that
measures 2D slices out of the 3D Spatial Fourier transform of the scene.
In many operational scenarios, the measured set of 2D slices does not fill
the 3D space in the Fourier domain, resulting in significant artifacts in
the reconstructed imagery. Traditionally, simple priors, such as sparsity
in the image domain, are used to regularize the inverse problem. In this
paper, we review our recent work that achieves state-of-the-art results in
3D SAR imaging employing neural structures to model the surface scat-
tering that dominates SAR returns. These neural structures encode the
surface of the objects in the form of a signed distance function learned
from the sparse scattering data. Since estimating a smooth surface from
a sparse and noisy point cloud is an ill-posed problem, we regularize the
surface estimation by sampling points from the implicit surface repre-
sentation during the training step. We demonstrate the model’s ability
to represent target scattering using measured and simulated data from
single vehicles and a larger scene with a large number of vehicles. We
conclude with future research directions calling for methods to learn
complex-valued neural representations to enable synthesizing new col-
lections from the volumetric neural implicit representation.

Keywords: Synthetic Aperture Radar, Tomographic Imaging, 3D Imag-
ing, Signed Distance Functions, Neural Implicit Representations

1 Introduction

Synthetic aperture radar (SAR) is a tomographic sensor that measures 2D slices
out of the 3D Spatial Fourier transform of the scene. Traditional 3D recon-
struction techniques involve aggregating, and indexing phase history data in the
spatial Fourier domain and applying an inverse 3D Fourier Transform to the data
as shown in references [1,2]. Obtaining high-resolution imagery requires the data
collected to be densely distributed in both the azimuth and elevation angle, which
is often not satisfied in operational scenarios. For instance, the sampling in eleva-
tion dimension is sparse and non-uniform in the GOTCHA dataset [3,4]. To cope
with the sparsely sampled data in elevation, regularized inversion methods [5]
that combine non-uniform fast Fourier transform method to model the forward
operator with regularization priors for the scene that promote structured solution
such as sparsity [6], limited persistence in the viewing angle domain [7–9], ver-
tical structures [10]. These regularization-based approaches promote dominant
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scattering mechanisms [11, 12] and produce sparse point clouds in the spatial
domain.

Furthermore, scattering from multiple internal reflections appears as scat-
tering centers at locations away from the surface of the object. Additionally,
the non-uniform sampling in the elevation domain leads to ambiguities in the
height direction of the iamge domain. This sampling leads to aliased copies of
the object. In this paper, we review our recent work that achieves state-of-the-
art results in 3D SAR imaging employing neural structures to model the surface
scattering that dominates SAR returns. These neural structures encode the sur-
face of the objects in the form of a signed distance function learned from the
sparse scattering data. Since estimating a smooth surface from a sparse and noisy
point cloud is an ill-posed problem, we regularize the surface estimation by sam-
pling points from the implicit surface representation during the training step. We
demonstrate the model’s ability to represent target scattering using measured
and simulated data from single vehicles and more significant scenes of hundreds
of objects. We conclude with future research directions calling for methods to
learn complex-valued neural representations to synthesize tomographic projec-
tions from previously unseen viewpoints/apertures.

2 Related Work

2.1 Classical 3D SAR Imaging

A common approach for 3D imaging is to formulate the inversion of the Fourier
operator as an inverse problem imposing regularization to enforce sparsity in the
spatial domain and promote correlation of scattering coefficients in the neighbor-
ing sub-apertures [13]. Reference [1] solves the recovery problem over individual
sub-apertures and non-coherently integrates the result to obtain a wide-angle
3D representation of the object. The backscattered response of the object is
also modeled as a superposition of the backscattered response of 3D canoni-
cal scattering mechanisms such as dihedral, trihedral, plate, cylinder, and top-
hat [14]. The scattering behavior of these canonical reflectors has been derived as
a function of the size of the scattering mechanism using the predictions from the
Geometric theory of diffraction [15]. References [7,10,16] jointly model the spar-
sity in scattering center locations and the persistence of scattering coefficients
in the azimuth domain. Alternatively, the imaging problem has been posed as
an interferometric imaging problem using measurements obtained from multiple
baselines [4], and [17]. The 3D non-uniform Fourier transform is approximated by
a set of 2D non-uniform Fourier transform for each baseline for range and cross-
range estimation and a 1D non-uniform Fourier transform for height estimation.
The effect of the persistence of the target on the ambiguities in the point-spread
function is presented in Reference [18]. The uncertainty in the localization of
scattering centers is dictated by the persistence, which leads to ambiguities in
the target localizations along the vertical direction projected along the viewing
angle of elevation.
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2.2 Neural Implicit Representations

Meanwhile, in computer vision, implicit neural representations, like Neural Radi-
ance Fields (NeRF) and its derivatives [19,20], become popular volume rendering
methods , boasting strong performance even when dealing with highly intricate
objects. This volume rendering approach is use focal-plane camera geometry to
sample multiple points along rays and perform composition of the colors of the
sampled points to link the 3D model to 2D views. The traditional discrete rep-
resentations of objects, scene geometry, and appearance using meshes and voxel
grids scale poorly with the scene’s size. Recent developments utilize continu-
ous functions parameterized by deep neural structures. These coordinate-based
Deep-nets are trained to map the low-dimensional spatial coordinates to output
a representation of shape or density for each spatial location. Coordinate-based
Deep-Nets have been used to represent images [21], volume density [20], occu-
pancy [22], and signed distance [23]. The signed distance function (SDF) is given
by

SDF (p) =


0,p ∈ Ω

+s,p ∈ Ω+

−s,p ∈ Ω−,

(1)

where s > 0 and Ω represents the object boundary, Ω+ represents the region
outside the object and Ω− represents the region inside the object.

Typically a Fourier feature layer is used as the input layer in the coordinate-
based Deep-Nets that operate on the spatial coordinates. It has been shown
that the Fourier feature mapping can be used to overcome the spectral bias of
coordinate-based Deep-Nets towards low frequencies by allowing them to learn
much higher frequency details in the geometry. Reference [21] showed that a
random Fourier feature mapping with an appropriately chosen scale could dra-
matically improve the performance of coordinate-based Deep-Nets across many
low-dimensional tasks in computer vision.

3 Denoising sparse point clouds using surface priors

We present a method to recover the point-cloud representation of the object from
SAR phase history data. The measurements from the SAR are collected over az-
imuth angles [θ1,e, · · · , θNP ,e] and elevation angles [ϕ1,e, · · · , ϕNp,e], with eleva-
tion passes e = 1, · · · , Nel and frequency points [f1, · · · , fNF

]. The phase history
data are denoted by Ye = [Y1,eY2,e · · ·YNP,e] where Y = [Y1; · · · ;YNel

] ∈
CNF×NP×Nel . We model the object as a collection of dominant scattering centers,
and each scattering center is isotropic over a sub-aperture. We assume the pulses
collected over different viewing angles are grouped in Ns sub-apertures over Nel
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elevation passes. The backscattered signal in a sub-aperture m is defined as

Ȳ (fi, θj,e, ϕj,e; θ̄m, ϕ̄m) =

K∑
k=1

smk exp

(
−j4πfi

c

(xk cosϕj,e cos θj,e + yk sin θj,e cosϕj,e + zk sinϕj,e)) ,

+ n(fi, θj , ϕk) (2)

where i = 1, · · · , NF , j = 1, · · · , NP ,e = 1, · · · , Nel, m = 1, · · · , NS , θ̄m is the
mean azimuth angle in sub-aperture m and ϕ̄m is the mean elevation angle in sub-
aperture m . The K-sparse scattering centers are located at spatial coordinate
pk = [xk, yk, zk] with sub-aperture dependent scattering coefficients smk ∈ C.
The region of interest is discretized into Nx×Ny×Nz voxels, and the resolution
of these grid points is chosen according to the range resolution to get cube-like
voxels. The measurement noise and modeling mismatches are combined in the
complex-valued noise term n(fi, θj,e, ϕj,e). The sub-aperture measurements can
be expressed as

Y (θ̄m, ϕ̄m) = Fm
3D(Sm) +N , (3)

where Y (θ̄m, ϕ̄m) ∈ CNF×NS×Nel is the sub-aperture phase history data, Fm
3D(.)

is the non-uniform Fourier transform [24] that maps the spatial coordinates to
the K-space measurement space, and Sm ∈ CNx×Ny×Nz are the complex-valued
scattering coefficients for each spatial location in the region of interest.

Given the measurements, the inverse problem of recovering the scattering
coefficients is solved using the regularized least squares method. The sparsity-
promoting prior is used to enhance the dominant scattering centers and suppress
the side lobes generated from the point spread function of the measurement
operator. The regularized least squares problem is given by

min
Sm

∥Sm∥1 Subject to ∥Y (θ̄m)−Fm
3D(Sm)∥2 ≤ σ2, (4)

where σ2 is the modeling error energy. The recovered scattering centers have
a sparse voxel representation for the sub-aperture m. The results from all the
sub-apertures are combined non-coherently to get a joint-sparse representation
given by

S =

Ns∑
m=1

|Sm|. (5)

The resulting quantity S consists of the scattering coefficients of the point-cloud
representation of the object in a regular voxel space. We denote each point in the
voxel space with scattering coefficients above a minimum threshold belonging to
the set P . Specifically, we denote the point-cloud P representing the object as

P = {pi = [x, y, z] if |S([pi])| ≥ τ} . (6)
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Next, we also find the viewing direction that corresponds to the maximum re-
sponse of each point across different sub-apertures. We denote this set as V and
each vi is given by

m∗ =argmaxm|Sm(pi)|
vi =[cos(θ̄m∗) cos(ϕ̄m∗); sin(θ̄m∗) cos(ϕ̄m∗); sin(ϕ̄m∗)] (7)

The initial estimate of the normal ni ∈ NP for each point pi ∈ P is computed
using a local principal component analysis. For each point, we find the nearest
neighbors with a distance of at most 0.3m. Next, we fit a plane using that subset
of points, where the normal direction of the plane is assigned as the normal
direction for the given point. Suppose the point pi has fewer than 3 neighbors
in that neighborhood. We select the normal direction based on the sub-aperture
with the maximum scattering coefficient at location pi. We utilize the set V and
assign ni = vi.

We utilize the signed distance function defined in Eq. (1) to represent the
object and learn a coordinate-based MLP to predict the zero-level set of the
SDF. Since the SAR point cloud is sparse, we use the concept of iso-points
developed in Reference [25]. The iso-points set Qiso are the points sampled from
the zero-level set of the neural network such that

Qiso = {q : f(q, Ψ) = 0} (8)

The sampling process to obtain dense samples on the iso-surface involves the
following steps: projection, uniform sampling, and up-sampling. The projection
operation is performed on a randomly sampled point q in the neighborhood of
set P to project it back on the surface represented by a zero-level set of the
neural network f(q;Ψ) using Newton’s iterations. Given a point qk−1, the k− th
update step is given by

qk = qk−1 − π

(
JT (qk−1)

∥J(qk−1)∥2
f(qk−1)

)
(9)

such that J(qi) is the Jacobian of the network parameters with respect to the
spatial coordinates qi.

π(x) =
x

∥x∥
min(∥x∥, τ0) (10)

π(x) is the clipping operation to avoid the possible noisy update step obtained
from the non-smooth neural implicit surface representation, and τ0 is the max-
imum preset threshold computed based on the bounding box size around the
region of interest. Newton’s update steps are repeated until the f(qk) ≤ 1e− 4.

This projection operator still produces non-uniform samples from the surface
and can lead to regions with no samples. We obtain uniform samples on the
surface by moving the points away from the high-density region such that

q = q − α
∑

qk∈Bϵ(q)

w(qi, q)
qi − q

∥qi − q∥
, (11)
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where Bϵ(q) is the set of points in the ball of radius ϵ around the point q. We
additionally define the weighting factor w(qi, q) as

w(qi, q) = exp

(
−∥qi − q∥2

σ2
p

)
, (12)

such that distant points have reduced influence, where σp is the density band-
width chosen per the scene size. Following the uniform sampling step to move
samples away from the high-density region, the resulting set of points is projected
on the zero-level set of the SDF using the iterations in Eq. (9).

Finally, a dense point cloud is created for a desired density using a sim-
plified version of the edge-aware resampling (EAR) technique [26]. The points
are resampled such that these points are pushed away from the edges to avoid
discontinuity in the normal direction while penalizing the formation of clusters.
The normal for each point in the iso-point set is computed using the normal-
ized Jacobian given by ni =

J(qi)
∥J(qi)∥

. The estimated normal direction is used to
update the iso-point cloud to ensure the points are away from edges by

∆qedge =

∑
qk∈Bϵ(q)

ϕ(ni, qi − q) (qi − q)∑
qk∈Bϵ(q)

ϕ(ni, qi − q)
, (13)

where ϕ(ni, qi−q) = exp
(
−nT

i (qi−q)
σ2
p

)
is the anisotropic projection weight such

that the normal computed for all the neighboring points qi is used to prefer
points that lie on the same plane, enforce smoothness, and penalize edges. The
following term penalizes the grouping of points and utilizes the weight function
defined in Eq. (12).

∆qrepulsion = 0.5

∑
qk∈Bϵ(q)

w(qi, q) (qi − q)∑
qk∈Bϵ(q)

w(qi, q)
. (14)

Points that are not well-separated are given higher weights such that they dis-
tribute uniformly on the surface. The update step for each point is given by

q = q − π(∆qrepulsion)− π(∆qedge). (15)

Upsampling is performed by adding more samples to low-density point regions
by adding new points to the set at these regions. A priority score to assess the
regions is defined for each point q as

P (q) = max
qi∈Bϵ(q)

∥qi − q∥ (16)

q∗ = argmaxqi∈Bϵ(q)∥qi − q∥. (17)

The q∗ falls in the region of highest priority; therefore, we next find the highest
priority neighbor of q∗ by q∗

i = argmaxqi∈Bϵ(q∗)∥qi−q∗∥. A new point is inserted
using the following asymmetric rule to avoid duplicate copies

qnew =
q∗
i + 2q∗

3
. (18)
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After the upsampling step, the generated points are again projected back on the
SDF using Newton’s iterations in Eq. (9).

3.1 Proposed solution

In this section, we present the network architecture to predict the signed distance
function and discuss the loss function to learn the network parameters.

Fig. 1: The network architecture consists of the input layer Fourier layer and 8 linear
layers with a softplus activation function and an output layer with a tanh activation
function to predict the signed distance function.

Network architecture We utilize the network architecture shown in Figure 1
proposed in [23] and [25] to estimate the signed distance function. The input
Fourier feature layers map the spatial coordinates to NF frequencies. In the
results section, we verify the effect of varying NF with the scene complexity.
The hidden layers have a latent-feature size of 512 with a soft-plus activation
function. The transformed input layer is also fed in layer 4. The output layer
consists of a linear map and the tanh activation function to predict the SDF.
Finally, the weights and bias of the network is initialized with standard Gaussian
variables.

Loss function The detected point clouds from SAR measurements are sparse
and noisy, since these are aliased copies due to non-uniform elevation sampling.
These point clouds are usually concentrated near edges and other dominant
scattering mechanisms. We aim to reconstruct the 3D object by enforcing the
surface prior and denoising the point cloud by estimating the network parameters
to learn a 3D representation of the object of interest. The iso-points estimated
from the implicit representation serve as a consistent and smooth approxima-
tion of the object that is refined during the training process. This regularization
ensures the training procedure does not overfit to noise. Since the iso-points are
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updated throughout the training process, we hypothesize the network learns the
high-frequency signals governed by the underlying geometry of the object. We
define three sets of point-clouds Qiso = {q : f(q;Ψ) = 0} is the point-cloud con-
sisting of iso-points, P is the point-cloud consisting of the training set and Qb is
the point-cloud consisting of the points sampled from the region of interest using
a uniform probability distribution. Since the iso-points are uniformly distributed
on the surface, these points can be used to augment the supervision in under-
sampled areas by enforcing SDF to be 0 on the iso-points set. The 0 condition
on the SDF is implemented through a sparsity promoting ℓ1 regularization in
Eqs. (19) and (20). The SDF for non-surface points is enforced to be non-zero by
utilizing the exponential term from Eq, (21). The Eikonal regularizer in Eq. (22)
enforces the output of the network to mirror the properties of a SDF.

LisoSDF =
1

|Qiso|
∑

q∈Qiso

|f(q)| (19)

Lon =
1

|P |
∑
p∈P

|f(p)| (20)

Loff =
1

|Qb|
∑
q∈Qb

exp (−α|f(p)|) (21)

LEik =
1

|Qbackground

⋃
Qiso|

∑
q∈Qb

⋃
Qiso

|1− ∥JT (q)∥| (22)

We compute the iso-points’ normals using a principal component analysis (PCA).
The consistency between the Jacobian of the model and the normal estimated
using a local neighborhood is evaluated using the cosine similarity as shown
below

LisoNormal =
1

|Qiso|
∑

q∈Qiso

(
1− |SC

(
JT (q),nPCA(q)

)
|
)

(23)

LNormal =
1

|P |
∑
p∈P

(
1− |SC

(
JT (p),nPCA(p)

)
|
)
, (24)

where the cosine similarity SC(a, b) = a.b
∥a∥∥b∥ . The optimization objective is

comprised of six parts:

L = λisoSDFLisoSDF + λisoNormalLisoNormal + λeikLeik

λonSDFLonSDF + λnormalLnormal + λoffSDFLoffSDF . (25)

4 Results

We evaluate the proposed algorithm on the Civilian Vehicle Data Domes dataset
presented in [27] and the GOTCHA parking lot measured datasets [3,4] using the
entire circular aperture. We utilize 8 elevation passes of a SAR sensor with 640
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MHz bandwidth corresponding to roughly 0.25 cm resolution. The point-cloud
and surface normals are recovered using regularized SAR inversion methods de-
scribed in [2] . The point-cloud and the estimated normal vectors are utilized to
train the network to estimate the SDF. The surface reconstruction by denoising
the point-clouds is solved using presented method. We qualitatively evaluate the
performance of the surface reconstruction by varying the number of frequen-
cies of the random Fourier feature layer at the input and the effect of utilizing
iso-points in the training procedure.

Figure 2 illustrates the surface representation estimated by the network for
a Jeep vehicle. We note that the points that are not close to the surface that
arise from multi-path and non-uniform frequency domain sampling are treated
as outliers and do not influence the surface estimation. We vary the number of
frequencies Nf in the input layer. We consider Nf = {6, 9} for evaluation. We
notice that as Nf increases the edges are clearly defined and the flat surfaces are
also modeled. We also note that fine details such as rear-view mirrors are missing
for Nf = 9 compared with Nf = 6. Additionally, there are more artifacts and
holes in the surface representation for the case of Nf = 6 compared to the case
of Nf = 9. We also evaluate the benefit of utilizing iso-points in the training

Fig. 2: Figure. A refers to the detected point-cloud and the estimated normal vectors
from SAR phase-history measurements for Jeep 93 Vehicle using 8 elevation passes.
Figure. B and Figure. C illustrate the recovered mesh using the SDF network after
training when iso-points are not generated from the network to regularize the network
optimization for the number of frequencies as 6 and 9 in the input layer, respectively.
Figure. D and Figure. E illustrate the recovered mesh using the SDF network after
training when iso-points are generated from the network to regularize the network
optimization for the number of frequencies as 6 and 9 in the input layer, respectively.

procedure. The iso-points regularize the network training procedure and helps
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in estimating the surface representations with more details and avoids artifacts
as shown in Figures 2.

Figure 3 shows the surface recovered from the GOTCHA parking lot dataset.
We utilize the entire 360 degree circular aperture to recover the point-cloud
representation, creating sub-apertures with an azimuth span of 5 degrees. The
number of random Fourier features in our reconstruction is set to NF = 9. We
observe that the proposed network architecture can successfully model the entire
parking lot and capture the geometric details of individual vehicles. Further
visualizations are provided in the supplementary materials.

Fig. 3: Implicit surface recovery from the GOTCHA parking lot dataset. Figure A
shows the entire parking lot, Figure B shows the backhoe from the dataset, and Figures
C and D show the surface approximation of a set of cars in the parking lot.

5 Future Research Directions: Complex valued Neural
Implicit Representations

The proposed framework in this paper allows denoising of the point clouds pro-
duced by the SAR sensor. However, complex amplitudes of the scatterers are
lost along the way and therefore does not allow synthesis of novel views of the
constructed objects. This objective can be achieved by extending the NeRF vol-
ume modeling strategy in two distinct ways to account for differences between
Electro-optic (EO) and SAR phenomenology. First, the color map function has
to be replaced with a view-dependent complex valued reflectance map with the
view encoded by azimuth and elevation angles of the SAR platform. Second,
the simple ray tracing based focal plane projections of the EO model has to be



Neural Implicit Representations for 3D SAR 11

replaced with orthographic projection of 3D scatterers of the object onto the
2D slant measurement plane. We note that the SAR projection operator is not
a simple orthographic summation of the complex reflectivities, instead contri-
butions are weighted with the phase terms proportional to their height from
the slant plane, complicating the forward measurement model. This complex
valued volumetric neural implicit representation can then be used to synthesize
tomographic projections from previously unseen viewpoints/apertures.
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