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Abstract

Current ultrasound image synthesis techniques often fall
short in semantic accuracy and physical realism or pro-
duce images with a significant domain gap. Ultra-NeRF
addresses these issues by creating a Neural Field from re-
constructed acoustic properties via pose-annotated B-mode
images and shows that it can be used for novel view synthe-
sis of B-mode images. While Ultra-NeRF generates plau-
sible results, it lacks explainability in the acoustic param-
eter space. In this paper, we revisit neural fields for ul-
trasound and introduce the Sonographic Neural Reflection
Field (SuRF), which adheres to the physical properties of
acoustic ultrasound. By redesigning Ultra-NeRF’s differen-
tiable forward synthesis model and incorporating physics-
inspired regularizations, we ensure the interpretability of
learned acoustic parameters. Tested on the Ultra-NeRF in-
silico dataset and a new multi-view ex-vivo 3D ultrasound
dataset, our method demonstrates enhanced reconstruction
and interpretation across various tissue types, including fat,
muscle, and bone.

1. Introduction
Inspired by Neural Radiance Fields (NeRF)[15], initial ad-
vancements in Neural Fields [26] for image-based novel
view synthesis[1] concentrated on generating photorealis-
tic RGB images[2, 14, 17, 19, 27] through a differentiable
forward model grounded in classical ray-based volume ren-
dering principles [12]. Over time, Neural Fields for novel
view synthesis have evolved to include more intricate in-
teractions between electromagnetic waves and the scene
being imaged. These developments have introduced ele-
ments such as reflections [10], polarization [7], and scatter-
ing in complex environments, including underwater imag-
ing [4, 13, 22], underscoring the significance of detailed
physics-based differentiable forward models for capturing
a wider range of visual features in RGB images. Further-
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more, recent research has shown that sensor-specific for-
ward models are essential for accurately depicting the im-
age formation process and defining Neural Fields for data
obtained from various sensors across the electromagnetic
spectrum [6, 8, 28]. Ultra-NeRF (Neural Reflection Field
for Ultrasound) [25] has proven that the NeRF framework
can be successfully adapted to acoustic waves physics in
medical ultrasound imaging. It employs a specialized, dif-
ferentiable, ray-based forward synthesis model, common in
ultrasound synthesis [3, 18], to accurately capture tissue
acoustic properties from pose-annotated B-mode (bright-
ness mode) images. However, further analysis revealed that
using Ultra-NeRF’s forward model to regress acoustic pa-
rameters can lead to degenerate solutions [25], where the
model fails to accurately represent the true acoustic char-
acteristics of tissues. This shortcoming affects the inter-
pretability of Ultra-NeRF’s volumetric ultrasound represen-
tation and limits its application in areas like tissue classifi-
cation [20].

In this paper, we tackle the issue of acoustic parameter
interpretability by revisiting the forward synthesis model of
Ultra-NeRF. We propose a new Neural Field for Ultrasound,
named Sonographic Neural Reflection Field (SuRF).

To summarize, our contributions are:
• We propose Sonographic Neural Reflection Field, a re-

fined, ultrasound-specific Neural Field that captures a 3D
scene based on the fundamental acoustic properties: at-
tenuation, scattering, and reflection;

• We incorporate physics-informed regularization into the
optimization process to enhance interpretability, aligning
optimized tissue characteristics with their physical coun-
terparts;

• We introduce an ex-vivo spine dataset with muscle and fat
tissue and a second phantom dataset with known attenua-
tion properties, enabling the evaluation of the correspon-
dence between learned and actual attenuation characteris-
tics.

2. Related Work
The adoption of Neural Fields is growing in medical imag-
ing, which is evident in recent publications highlighting



Figure 1. Overview of SuRF pipeline The method consists of two modules: a neural network and a ultrasound synthesis model. At each
sampled point, the neural network generates a vector of rendering parameters, which are subsequently mapped by the rendering function
to pixel intensities. The synthetic B-mode image is created by synthesizing all the pixels for the B-mode image plane.

its relevance when considering the distinctive properties of
medical imaging modalities. Notably, Corona-Figueroa et
al. [6] propose a method to render CT reconstruction from
multi-view X-rays. Iddrisu et al. [11] use NeRF to recon-
struct 3D MRI volumes from 2D MRI slices while consid-
ering potential motion artifacts. Zha et al. [28] and Fang
et al. [9] propose a Neural Attenuation Field based on
NeRF for sparse view CBCT (Cone Beam Computed To-
mography) reconstruction by learning the attenuation coef-
ficient field. The physics and mechanism behind an image
formation using ultrasound differs from the imaging with
electromagnetic wave [23]. To model ultrasound propaga-
tion in human tissue for for novel B-mode synthesis, Ultra-
NeRF introduces introduces a specialized volumetric for-
ward synthesis model for ultrasound imaging, demonstrat-
ing NeRF’s adaptability to B-mode imaging. However, it
has been shown that Ultra-NeRF’s forward model can pro-
duce degenerate solutions, failing to accurately represent
tissue acoustic properties [25]. In this paper, we improve
parameter interpretability by revising Ultra-NeRF’s forward
synthesis model and adding physics-inspired regularization.

3. Method

3.1. Overview

We aim to reconstruct tissue acoustic parameters from B-
mode images for a forward synthesis model that generates
B-mode images for any image plane within the scanned re-
gion. We refine the ultrasound-specific forward synthesis
model of Ultra-NeRF by proposing synthesis based on a
minimal set of parameters (attenuation, reflection, and scat-
tering) and incorporating log-compression into the model,
reducing complexity while enabling plausible B-mode syn-
thesis. As shown in Fig 1, our method uses a neural network
that maps coordinates sampled along the ray to acoustic pa-
rameter at these coordinates. The network is trained with B-
mode observations and similarity losses between synthetic
and ground truth images. To avoid degenerate solutions,
we apply physics-inspired regularization by integrating reg-
ularization terms into the loss function.

3.2. Forward Synthesis Model for Ultrasound

We model the rendering of a B-mode image for Field of
View (FOV) of a linear probe. A B-mode image is com-
posed of scanlines, which in our model correspond to ultra-
sound rays. We refer the reader to the supplementary mate-
rial for the definition of the ray. We model the recorded
echo E along a ray as a function of distance t from the
transducer by considering two types of reflections: major
reflections (specular reflections) R and backscattering (dif-
fuse reflections) B:

E(r, t) = R(r, t) +B(r, t) (1)

Having formulated the echo E, we define the design choices
for R and B.

In ultrasound systems, received reflections, denoted as
R′, are enhanced through Dynamic Range adjustment on
the ultrasound machine. To consider the amplification
of weak reflections, we calculate the amplified reflection
R(r, t) using a log-compression function with a hyperpa-
rameter γ [24], resulting in the reflection at a point p defined
as:

R(r, t) = ln(1 + γ ·R′(r, t)) · ln(1 + γ) (2)

where R′(r, t) = T (r, t) · β(r, t) (3)

with T (r, t) as the transmitted ultrasound signal at the dis-
tance t and β(r, t) the learned reflection coefficient. To
compute T (r, t), the propagation of sound is tracked along
r andT (r, t) along r is modeled by considering the intensity
loss attributed to reflection and attenuation from tn to tf as
follows:

T (r, t) = T (r, 0)·exp−
∫ tf
tn

β(r,n)dn · exp−
∫ tf
tn

α(r,n)dn (4)

where tn is the origin of the ray, tf is a location on the ray
infinitesimally close to t. We assume that the transmitted
ultrasound signal at the ray origin defined by T (r, 0) is 1.
In Equation 4, the α represents the learned attenuation co-
efficient and refers to the gradual weakening or reduction in
the intensity of an ultrasound wave. In this context, we do
not distinguish between various attenuation sources and do
not model the effect of Time Gain Compensation (TGC).



The backscattered energy B(r, t) originating from the
scattering medium is influenced by the transmitted sound
T (r, t) and a 2D map of scattering S and convolved with
the 2D point-spread function (PSF):

B(r, t) = T (r, t)·
∫∫

S(u, v)·PSF(r−u, t−v) du dv (5)

The map S is learned using a generative model inspired
by [29]:

S(u, v) = 1(u, v) · ϕ(u, v) (6)

where ϕ represents the scattering amplitude, and 1(u, v) is
an indicator function that equals 1 for a scattering point and
0 otherwise. The value for a point p is sampled from the
Bernoulli distribution parameterized by scattering density
ρs. As demonstrated in [29], when dealing with a fully de-
veloped speckle, it is assumed that the scattering density
remains constant. Therefore, only the scattering amplitude
is learned.

Evaluating Equations (1) to (6) requires knowledge of
the three acoustic properties of tissue at point p, namely at-
tenuation coefficient α, reflection coefficient β, and scatter-
ing amplitude ϕ. Together, these properties form the tissue
characteristics vector θ(p) = [α(p), β(p), ϕ(p)].

3.2.1 B-mode Synthesis and Acoustic Parameter Maps

Equations (1) to (6) allow us to compute echo values for
each point p ∈ Ψ. However, in practice, we approximate
Ψ by its discrete version, denoted as Ψ̂. Since the compu-
tation of the echo for each pixel of Ψ̂ depends on the tissue
characteristics vector θ at that point, we similarly create tis-
sue characteristics maps for the same image plane as Ψ̂. We
denote these maps as the attenuation map α̂, reflection map
β̂, and scattering map ϕ̂. We refer the reader to the supple-
mentary material for the exact discrete formulation.

3.3. Physics Inspired Regularization

3.3.1 Interrelation of acoustic properties

We exploit the physical relationship between scattering and
attenuation in ultrasound imaging, where attenuation is in-
fluenced by absorption, reflection, and scattering within the
tissue. To leverage this relationship, we propose a regular-
ization term that enforces correlation between the inferred
scattering and attenuation maps. This is achieved by using
the Local Normalized Cross-Correlation (LNCC) to guide
the network in maximizing the similarity between α̂ and ϕ̂.

The local correlation between α̂ and ϕ̂ for each k =
α̂(p̂), l = ϕ̂(p̂) over a window Ω is defined as follows:

LNCC(k, l) =

∑
ξ∈Ω

1
w(p̂) ϕ̂

′(ξ)α̂′(ξ)√∑
ξ∈Ω[ϕ̂

′(ξ)]2
∑

ξ∈Ω[α̂
′(ξ)]2

(7)

with the weighted, mean-shifted values ϕ̂′(ξ) and α̂′(ξ)
defined as:

ϕ̂′(ξ) = w(p̂)(ϕ̂(p̂+ ξ)− µ(p̂)) (8)

α̂′(ξ) = w(p̂)(α̂(p̂+ ξ)− ν(p̂)) (9)

Finally, the regularization loss is computed over all
points p̂ ∈ Ψ̂ to maximize LNCC between scattering and
attenuation as follows:

LLNCC(α̂, ϕ̂) = −
∑
p̂∈Ψ̂

LNCC(α̂(p̂), ϕ̂(p̂)) (10)

3.3.2 Local homogeneity

In ultrasound imaging, it is common to assume that tissue is
locally homogeneous, implying minimal variation in tissue
characteristics. To leverage this assumption, we apply total
variation (TV) regularization to the scattering map based
on the gradient in this map. However, traditional TV reg-
ularization can penalize legitimate abrupt changes in tissue
properties between different types. To address this, we in-
troduce a reflection-weighted version of TV regularization,

LTV(ϕ̂, β̂) =
∑
p̂∈Ψ̂

σ(p̂)ϕ′(p̂) (11)

where σ(p̂) = βmax − β̂(p̂)

In this equation, the penalty function uses a weight factor,
σ(p̂), to constrain the reflection coefficient based on vari-
ability in the scattering attenuation map. The correlation
between attenuation and scattering means that penalizing
the total variation of the scattering map also affects the at-
tenuation map, reflecting their bidirectional relationship.

3.3.3 Loss Function

The aim is to find an implicit neural representation of a vec-
tor field parametrized by a neural network fΘ. To find the
trainable parameters Θ we optimize the network to mini-
mize the following loss function:

L = λ1(1− LMSSSIM(I,Ir)) + λ2L2(I, Ir)

+ λ3LTV(ϕ̂, β̂) + λ4LLNCC(α̂, ϕ̂),
(12)

consisting of primary optimization terms, namely MSSSIM
and L2, and auxiliary regularization, each associated with
respective weights λi.

4. Experiments
4.1. Data

In addition to datasets presented in [25], we introduce two
additional datasets: an ex-vivo phantom dataset to assess



Figure 2. Qualitative evaluation of rendering results. Synthetic B-mode images created using poses from test datasets for Ultra-NeRF
(upper row) and SuRF (middle row) in comparison to the original B-mode images (lower row) captured at these poses; examples for (from
the left) synthetic dataset, phantom dataset, ex-vivo dataset. The examples show that our methods synthesizes plausible B-mode images
that preserve view-dependent features like acoustic shadows underneath the bone pointed in the images by the arrows. We observe that the
shape of structures like vessels (bounding boxes, in-silico dataset) or bones (bounding boxes, spine phantom dataset) are better preserved
in SuRF. Similarly to Ultra-NeRF, SuRF falls short in reproducing complex tisse texture details such as muscle fibres (bounding boxes,
ex-vivo dataset).

rendering performance on real tissue, and a dataset col-
lected on a general purpose ultrasound phantom with known
attenuation (CIRS Phantom). Each dataset comprises B-
mode images with corresponding pose annotations. We re-
fer the reader to the suplementary material for the details
regarding the dataset.

4.2. Qualitative Evaluation

4.2.1 Novel View Synthesis

We qualitatively evaluate novel view synthesis by compar-
ing the synthetic B-mode images with corresponding real
B-mode images from the test set. As illustrated in Figure 2,
the renderings closely match real B-mode images from vari-
ous datasets, effectively capturing key view-dependent phe-
nomena like acoustic shadowing. For example, when a bone
obscures the underlying tissue, the renderings reflect this in-
teraction accurately. SuRF improves Ultra-NeRF by better
preserving the shape of the structures such as vessels and
bones. However, like its predecessor, SuRF still struggles
with accurately reproducing complex tissue textures, such
as muscle fibers.

4.2.2 Explainability of The Acoustic Parameter Space

We qualitatively assessed interpretability by comparing the
decomposition of synthetic B-mode images into reflection,
attenuation, and scattering between Ultra-NeRF and SuRF
(Fig 3). Without regularization, the maps show a degenerate
solution where scattering encodes most of the information,
making it difficult to distinguish tissue types. In these maps,
scattering fully defines the B-mode image, with no corre-
lation between scattering and attenuation. However, with
regularization, scattering and attenuation are correlated, in-

Figure 3. Decomposition into tissue acoustic characteristics
maps SuRF helps in learning tissue parameters that produce plau-
sible B-mode images and enhance tissue acoustic characteristics.
Top row shows the decomposition of a rendered B-mode for Ultra-
NeRF [25] and bottom row shows it for SuRF.

dicating that stronger scattering is associated with greater
attenuation.

5. Conclusion
In this paper, we presented SuRF, a novel, interpretable,
ultrasound-tailored neural field designed for physically
plausible B-mode synthesis. SuRF highlights the poten-
tial of neural fields beyond imaging with electromagnetic
waves. Our experiments on various ultrasound datasets, in-
cluding the newly acquired, multi-view, pose-annotated ex-
vivo data, demonstrate the method’s utility for novel-view
B-mode synthesis, robustness across different tissue types,
and its ability to capture tissue geometry. Morover, SuRF
significantly improves interpretability within the acoustic
parameter space by incorporating physics-based regulariza-
tions. This improvement enhances our ability to under-
stand and interpret B-mode data beyond their pixel inten-
sities.



References
[1] S. Avidan and A. Shashua. Novel view synthesis by cascad-

ing trilinear tensors. IEEE Transactions on Visualization and
Computer Graphics, 4(4):293–306, 1998. 1

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 5855–5864,
2021. 1

[3] Benny Burger, Sascha Bettinghausen, Matthias Radle, and
Jürgen Hesser. Real-time gpu-based ultrasound simulation
using deformable mesh models. IEEE transactions on medi-
cal imaging, 32(3):609–618, 2012. 1

[4] Lifang Chen, Yuchen Xiong, Yanjie Zhang, Ruiyin Yu, Lian
Fang, and Defeng Liu. Sp-seanerf: Underwater neural radi-
ance fields with strong scattering perception. Computers &
Graphics, page 104025, 2024. 1

[5] CIRS. General Purpose Ultrasound Phantom, 2014. Ac-
cessed on 05.03.2024. 1

[6] Abril Corona-Figueroa, Jonathan Frawley, Sam Bond-
Taylor, Sarath Bethapudi, Hubert PH Shum, and Chris G
Willcocks. Mednerf: Medical neural radiance fields for
reconstructing 3d-aware ct-projections from a single x-ray.
arXiv preprint arXiv:2202.01020, 2022. 1, 2

[7] Akshat Dave, Yongyi Zhao, and Ashok Veeraraghavan. Pan-
dora: Polarization-aided neural decomposition of radiance.
In European Conference on Computer Vision, pages 538–
556. Springer, 2022. 1

[8] Thibaud Ehret, Roger Marı́, Dawa Derksen, Nicolas Gas-
nier, and Gabriele Facciolo. Radar fields: An extension of
radiance fields to sar. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
564–574, 2024. 1

[9] Yu Fang, Lanzhuju Mei, Changjian Li, Yuan Liu, Wenping
Wang, Zhiming Cui, and Dinggang Shen. Snaf: Sparse-
view cbct reconstruction with neural attenuation fields. arXiv
preprint arXiv:2211.17048, 2022. 2

[10] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-
Hai Zhang. Nerfren: Neural radiance fields with reflec-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 18409–
18418, 2022. 1

[11] Khadija Idrissu, Sylwia Malec, and Alessandro Crimi. 3d
reconstructions of brain from mri scans using neural radiance
fields. bioRxiv, pages 2023–04, 2023. 2

[12] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH computer graphics, 18(3):165–
174, 1984. 1

[13] Deborah Levy, Amit Peleg, Naama Pearl, Dan Rosenbaum,
Derya Akkaynak, Simon Korman, and Tali Treibitz. Seathru-
nerf: Neural radiance fields in scattering media. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 56–65, 2023. 1

[14] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 7210–7219, 2021. 1

[15] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020. 1

[16] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165–174, 2019. 1

[17] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
ICCV, 2021. 1

[18] Mehrdad Salehi, Seyed-Ahmad Ahmadi, Raphael Prevost,
Nassir Navab, and Wolfgang Wein. Patient-specific 3d ultra-
sound simulation based on convolutional ray-tracing and ap-
pearance optimization. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention,
pages 510–518. Springer, 2015. 1

[19] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware im-
age synthesis. Advances in Neural Information Processing
Systems, 33:20154–20166, 2020. 1

[20] Caifeng Shan, Tao Tan, Jungong Han, and Di Huang. Ultra-
sound tissue classification: a review. Artificial Intelligence
Review, 54(4):3055–3088, 2021. 1

[21] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in neural information processing
systems, 33:7537–7547, 2020. 1

[22] Yunkai Tang, Chengxuan Zhu, Renjie Wan, Chao Xu, and
Boxin Shi. Neural underwater scene representation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11780–11789, 2024.
1

[23] Maria Tirindelli, Christine Eilers, Walter Simson, Magdalini
Paschali, Mohammad Farid Azampour, and Nassir Navab.
Rethinking ultrasound augmentation: A physics-inspired ap-
proach. In Medical Image Computing and Computer As-
sisted Intervention–MICCAI 2021: 24th International Con-
ference, Strasbourg, France, September 27–October 1, 2021,
Proceedings, Part VIII 24, pages 690–700. Springer, 2021. 2

[24] Wolfgang Wein, Ali Khamene, Dirk-André Clevert, Oliver
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