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Abstract

In geophysics, gravity surveys measure variations in the
gravitational field due to density anomalies in the Earth’s
crust. Inversion, i.e. estimating the positions, extents, and
densities of causative mass anomalies from the survey, is an
ill-posed problem which has historically used voxel-based
methods, with geological and geophysical constraints.

We introduce a gravity survey inversion method utilising
a neural field for predicting the class of relative density of
a mass anomaly at given coordinates within a volume. The
classes target the known densities of anomalies, ordered in
increasing relative density allowing for ordinal regression.
In training the network, the error in the predicted gravity re-
sponse due to these anomalies, relative to the input gravity
survey, is minimised.

Our initial investigations with synthetic data demon-
strate that this neural field approach produces plausible
density models consistent with the input gravity survey, and
smooth density models are obtained in the presence of noise.

1. Introduction
Gravimetry is a field of geophysics whereby density vari-
ations in the Earth’s crust are measured using a gravime-
ter. They are a widely used method for understanding the
Earth’s subsurface, for example for geological understand-
ing of rock density distributions [6] and geological discon-
tinuities [4]. Measurements can be post-processed to com-
pensate for known variations e.g. due to the shape of the
Earth, elevation above/below sea level, tides, and terrain [1].
Resampling to a regular grid simplifies visualisation of the
data as a regular image and allows processing with filters
such as for feature detection and upward continuation, i.e.
calculating the gravity response at a higher elevation [1].

The gravitational response due to mass anomalies of
known densities, locations, and extents can be calculated
analytically [1], i.e. forward modelling. However, for the
inverse problem, known as inversion, infinitely many dis-

tributions of causative masses can produce the observed re-
sponse [6, 12]. For example, a single shallow mass, and
larger or more dense deeper masses may produce equiva-
lent responses. Approaches to counter this ambiguity in-
clude depth weighting [6], model pre-conditioning [12] and
level set methods [4]. Constraints such as localising anoma-
lies laterally [2]; bounds on thickness, density or maximum
depth [10]; or restricting the inverted density values to a set
of predetermined values [4] can improve inversions. Inver-
sion methods have historically been voxel-based.

Some neural networks incorporate physical constraints
in the loss functions. Cheng et al. [3] used a neural net-
work approach to model the gravitational field around small
bodies in space, e.g. asteroids, by predicting a gravitational
force vector at coordinates relative to the asteroid; accurate
knowledge of small bodies’ variable gravitational fields is
essential for trajectory computation for landing spacecraft
on asteroids. Martin and Schaub used neural networks to
map position to acceleration for space-borne measurements
of gravitational fields of the Earth and Moon [7] and small
bodies [8]. Izzo and Gómez [5] used a neural field to model
a small body’s shape and density distribution from orbiting
spacecraft accelerations.

We introduce a method for inverting a gravity survey
utilising a neural field for predicting the relative density at
given coordinates within a volume. We train a multi-layer
perceptron with sinusoidal activation functions [11] for or-
dinal regression of density class indices. The class index
is mapped to a relative density value using a sum of sig-
moids derived from the desired density value for each class;
a gravity survey is forward modelled from the coordinates
and predicted relative density values; the loss is calculated
via comparison to the input gravity survey. A stratified
sampling approach is used. The inverted volume contains
smooth masses, which is generally preferable [6].

In this preliminary work, we apply the method to syn-
thetic data in order to evaluate it against a known ground
truth. The resultant density volumes accurately reproduce
the input gravity survey in the presence of noise-corrupted



input data. The neural field representation provides for con-
tinuous density models, in contrast to classical voxel-based
approaches and particularly at lower resolutions, and pro-
duces desirable smooth anomalies within the volume. These
outcomes indicate that neural fields are suitable for density
modelling in gravity survey inversion, and in the future may
provide a framework for combining classical geophysical
constraints with neural methods, for example, signed dis-
tance function methods are common to both fields.

Our approach operates on a single top-down gravity
survey, in contrast to approaches for small body mod-
elling [5, 7, 8] which use measurements from space probes
orbiting a small body that provide 360° observations. In a
computer vision analogy, our method is single view 3D re-
construction, compared to 3D reconstruction from viewing
rays surrounding the object in all three dimensions. Also,
for small body modelling the total mass is known, whereas
in our application it is not. Hence our method tackles prob-
lems not present in small body modelling.

2. Method
A multi-layer perceptron with sinusoidal activation func-
tions [11] regresses a relative density class index c(x,y,z)
from input coordinates (x, y, z), using 3 hidden layers of
128 features each. The class index is used to calculate
a relative density value. Let ρ = {ρ1, . . . , ρN}, where
ρi < ρi+1, represent the densities of specific mineralo-
ges or fluids, relative to the geological background density
which is represened by a class with relative density of 0.
Negative relative densities represent less dense material or
voids. This use of specific densities follows existing inver-
sion methods [4]. Ideally, c(x,y,z) ∈ {1, . . . , N}, specify-
ing a particular relative density ρc(x,y,z)

∈ ρ at (x, y, z).
However as the regressed density class index is real-valued,
we use a sum of sigmoids to calculate a relative density as
shown in Fig. 1. This resulting relative density function is
continuous, and is guided toward the specific desired or-
dered values in ρ. Successive sigmoids are translated by
1, and scaled by the difference in successive relative densi-
ties. We use S = 25 for steeper transitions; the offset of 0.5
translates the inflection points to halfway between integer
class indices. The predicted mass anomaly m at (x, y, z) is
computed from the class index and density values:

m(x, y, z) = ρ1 +
∑

n∈[2,N ]

ρn − ρn−1

1 + e−(c(x,y,z)−n+0.5)×S
(1)

For masses m in the modelled volume of interest V , the
vertical component gz of the gravitational potential field at
a given survey location (xs, ys, zs) is calculated via [1]:

gz(xs, ys, zs) = −G
∑

(x,y,z)∈V

m(x, y, z)
(zs − z)

r3
, (2)

Figure 1. The relative density is calculated from the class index
using a sum of sigmoids.

where G is the gravitational constant, and

r =
√
(xs − x)2 + (ys − y)2 + (zs − z)2. (3)

In practice, coordinates in each dimension are nor-
malised to [−1, 1] before being input to the MLP to predict
the density class index, which is similarly normalised.

In training, the volume is sampled to predict the relative
density throughout. A stratified sampling method [9] sam-
ples the volume at two scales: regularly at a larger scale
and then stochastically within each larger scale unit. These
finer scale coordinates and their predicted relative densi-
ties are used to forward model a predicted gravitational re-
sponse. Since this approach sub-samples the volume, at
each location a point mass representive of a cube with the
larger scale’s side length and the predicted density is for-
ward modelled, to simulate it being volumetrically repre-
sentative of a sample at the larger scale. We hypothesize
that this sampling approach is particularly suited for this
application where smooth inversion volumes are desirable.
The forward model is computed at xs and ys values cover-
ing the survey’s lateral extent, while the survey elevation zs
is constant. The training loss is then the mean squared error
between the observed response in the input gravity survey,
and this predicted forward modelled gravitational response.

3. Results
We present results for inverting a gravity survey forward
modelled from five synthetic spherical masses of various
densities, sizes, and depths listed in Tab. 1, located in a
2048× 2048× 2048m cube. The gravimetry responses are
reported in milligals, where 1 Gal = 1 cm s−2. For numer-
ical simplicity we used G = 0.1 N m2 kg−2 in forward
modelling. Stratified sampling first sampled the volume
in 32 × 32 × 32m voxels, then stochastically within each
voxel. The survey resolution is 512 × 512, with a survey
elevation of zs = 400m. The model uses relative density
values ρ = {−1, 0, 1, 2, 4, 8} kg/m3. A PyTorch imple-
mentation used the Adam optimiser with an initial learning
rate of 1× 10−4, and trained for 5000 iterations.

Fig. 2 shows slices of the inverted continuous density
volumes, examining its sensitivity to the initial conditions.



Mass x y z Radius Rel. density
ID m m m m kg/m3

A 512 1536 384 100 4
B 1536 1024 256 100 2
C 1024 256 64 64 2
D 1536 1536 128 90 1
E 512 512 768 90 −1

Table 1. The synthetic masses’ relative densities, radii, and loca-
tions in a 2048× 2048× 2048m volume.

As inversion is an ill-posed problem, the initial conditions
influence the final inversion volume. The network was ini-
tialised by training it with the known class index for each
(x, y, z) coordinate as per Tab. 1 and the variations de-
scribed below. The resulting volumes are plausible and
the predicted gz forward models are highly similar to the
target gravity survey response, indicating that neural fields
are capable of numerically accurate inversion. The ground
truth masses are shown in (a). Volume (b) is initialised
to all zeros, and the method produces large, shallow, low
density masses, laterally located over the corresponding
ground truth masses of higher density and producing sim-
ilar gravitational responses. Volume (c) is initialised with
masses with double the densities at half the depth and omit-
ting mass E; remnants of this double-density initialisation
are visible for masses C (at 64m), D (also 64m) and B
(128m), with larger, smooth, low density masses added con-
tributing to the desired gravitational response. In (d), half-
density masses at double the depth are modelled and mass E
omitted; here the desired response is modelled with larger,
deeper masses, with particular reference to the equivalent of
mass A being largely modelled at 768m. Volumes (e) and
(f) are initialised with 3 masses roughly at the positions of
A, B and D but with positions and radii perturbed so that the
initial masses are not representative of the ground truth; ad-
ditionally, Gaussian noise with σ = 3 mGal is added to the
input gz survey in (f). In these cases we note qualitatively
similar and smooth volumes are obtained despite the added
measurement noise, and the initialisation of deeper masses
A and B influences the inversion.

This preliminary study shows that the method accurately
models the input gz survey with masses of homogenous
density, though we note a bias toward larger, lower density
masses. Some deeper, low-density masses cover a large lat-
eral area, but do not significantly contribute to the forward
modelled gz due to their depth and density. We anticipate
incorporating classical geophysical regularization methods
to address these biases. The negative relative density class is
used sparingly and is not used to cancel out responses from
positive density anomalies. We hypothesise that stratified
sampling provides spatial regularization to produce smooth
results, and will investigate this in future work.

4. Conclusions
We have introduced a novel framework to invert gravity
surveys, utilising an neural field to model the underlying
density class indices within a volume; the indices are then
mapped to desired relative density values. Our initial in-
vestigations demonstrate that the method produces smooth
models, even with added noise, with the forward modelled
results highly similar to the input gravity survey. As with
existing methods, the inversion results are dependent on the
quality of the provided depth and density estimates. Fu-
ture work will apply classical geophysical and geological
priors and regularization approaches to improve depth es-
timates and compactness within this framework, and apply
the method to more complex scenarios and real-world data.
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[5] Dario Izzo and Pablo Gómez. Geodesy of irregular small
bodies via neural density fields. Communications Engineer-
ing, 1(1):48, 2022. 1, 2

[6] Yaoguo Li and Douglas W. Oldenburg. 3-D inversion of
gravity data. Geophysics, 63(1):109–119, 1998. 1

[7] John Martin and Hanspeter Schaub. Physics-informed neural
networks for gravity field modeling of the Earth and Moon.
Celestial Mechanics and Dynamical Astronomy, 2022. 1, 2

[8] John Martin and Hanspeter Schaub. Physics-informed neural
networks for gravity field modeling of small bodies. Celes-
tial Mechanics and Dynamical Astronomy, 2022. 1, 2

[9] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision, 2020. 2

[10] Robert L. Parker. The theory of ideal bodies for gravity in-
terpretation. Geophysical Journal of the Royal Astronomical
Society, 42:315–334, 1975. 1

[11] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Proceedings of the
34th International Conference on Neural Information Pro-
cessing Systems, pages 7462–7473, 2020. 1, 2

[12] Michael S. Zhdanov. Inverse Theory and Applications in
Geophysics (2nd Edition). Elsevier, 1995. 1



Depth Ground truth Zero init 2×dens, 1
2depth 1

2dens, 2×depth Perturbed init (e) + noise*
m (a) (b) (c) (d) (e) (f)

Initialised gz* Ground truth

64

128

256

384

512

768

Forward gz

MSE loss Ground truth 0.0187 mGal2 0.0112 mGal2 0.0164 mGal2 0.0119 mGal2 8.9930 mGal2

Figure 2. Inversion results due to different initialisations. Rows illustrate: the volume’s forward modelled gz after initialisation (* except
for (f) the noise-corrupted target gz is shown instead, note the initial gz is the same as (e)); depth slices of the inverted volume; the forward
modelled gz response due to the inverted volume; and the final loss relative to the ground truth gz . Columns contain: (a) Annotated ground
truth masses listed in Tab. 1. The origin is in the top-left corner. Then, inversion results with: (b) relative density initialised to 0 everywhere;
(d) initialisation based on double density spheres at half depth; (d) half density spheres at double depth; (e) perturbed locations, sizes and
missing masses; (f) as per (e), with added Gaussian noise of 3 mGal, which contributes to the larger loss. For depth slices, blue/grey/yellow
indicates negative/0/positive relative density compared to the background; saturation increases with magnitude of relative density. Compare
colours in (a) to Tab. 1 for relative density values. Please refer to a digital version of the manuscript to view the figure in more detail.
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