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Abstract. Cryo-electron microscopy (cryo-EM) has revolutionized struc-
tural biology by resolving 3D structures of biomolecules at near-atomic
resolution. However, revealing the continuous conformational heterogene-
ity from hundreds of thousands of noisy particle images remains challeng-
ing. Recent advances in heterogeneous reconstruction, often conducted in
the Fourier domain, suffer from a lack of interpretability and are limited
in achieving higher resolution in locally flexible regions. To address this
issue, we propose CryoFormer, a novel approach for high-resolution and
continuous heterogeneous cryo-EM reconstruction. CryoFormer leverages
a feature volume in the real domain to capture fine-grained local changes.
We then design a novel query-based transformer architecture that incor-
porates deformation-aware features and region-wise spatial features us-
ing a cross-attention mechanism. Our transformer-based pipeline further
supports pose refinement and can automatically highlight flexible regions
by visualizing 3D attention maps. Extensive experiments show that our
method achieves the best performance on five datasets (two synthetic
and three experimental). We also contribute a new synthetic dataset of
the PEDV spike protein for more comprehensive evaluations. Both the
code and the PEDV dataset will be released for better reproducibility.

Keywords: Cryo-electron Microscopy · Neural Representation · Dy-
namic Reconstruction

1 Introduction

Dynamic objects as giant as planets and as minute as proteins constitute our
physical world and produce nearly infinite possibilities of life forms. Accurate
⋆ Equal contribution.
† Work done while studying at ShanghaiTech University.
‡ Work done while working at Cellverse.
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Fig. 1: Pipeline of CryoFormer. 1) Given an input image, our orientation encoder
and deformation encoder first extract orientation representations and deformation fea-
tures. We use pre-computed pose estimations to regularize the orientation encoder.
2) We convert the orientation representation into a pose estimation and transformed
coordinates are fed into our implicit neural spatial feature volume to produce a spatial
feature. 3) The spatial feature and the deformation image feature then interact in the
deformation transformer decoder to output the density prediction.

recovery of their 3D shape, appearance, and movement helps to reflect the fun-
damental laws of nature. Conventional computer vision techniques combine spe-
cialized imaging apparatus such as domes or camera arrays with tailored re-
construction algorithms (SfM [56], NeRF [40], and most recently 3DGS [24]) to
capture and model the fine-grained 3D dynamic entities at an object level.

Similar approaches have been adopted to recover shape and motion at a
micro-scale level. In particular, to computationally determine protein structures,
cryo-electron microscopy (cryo-EM) flash-freezes a purified solution with hun-
dreds of thousands of particles of the target protein in a thin layer of vitreous ice.
In a cryo-EM experiment, an electron gun generates a high-energy electron beam
that interacts with the sample, and a detector captures scattered electrons during
a brief duration, resulting in a 2D projection image that contains many particles.
Given projection images, the single particle analysis (SPA) technique iteratively
optimizes for recovering a high-resolution 3D protein structure [29, 43, 51]. Ap-
plications are numerous, ranging from revealing virus fundamental processes [71]
in biodynamics to unveiling drug-protein interactions [21] in drug development.

Compared with macro-scale reconstruction, cryo-EM reconstruction presents
unique challenges. First, cryo-EM images exhibit a low signal-to-noise ratio
(SNR) with unknown particle orientations, leading to severe corruption of the
structural signals. In addition, the flexible regions of proteins induce confor-
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mational heterogeneity, further disrupting orientation estimation. Conventional
software packages [49,55] only model conformations with a small discrete set to
reduce the complexity. Such approaches often yield low-resolution reconstruc-
tions of flexible regions and necessitate guidance from human experts. Recently,
neural approaches exploit coordinate-based representations for heterogeneous
cryo-EM reconstruction [13,27,32,75,76]. To mitigate the computational expense
through the usage of the Fourier slice theorem [6], they perform reconstruction
in the Fourier domain. A downside, however, is that modeling and interpreting
local density variations between conformations in the Fourier domain is ardu-
ous and counter-intuitive, resulting in a reconstruction resolution falling short
of practical application requirements.

Different from previous Fourier domain approaches [31,76], we propose Cry-
oFormer (Figure 1), conducting reconstruction in the real domain to facilitate
the modeling and interpretation of local flexible regions. Taking 2D particle im-
ages as inputs, our orientation encoder and deformation encoders extract image
features related to orientation and deformation. We construct an implicit feature
volume in the real domain as the core of our approach and introduce a novel
query-based transformer decoder to generate a continuous, heterogeneous density
volume. Specifically, our deformation-aware cross-attention mechanism embeds
image deformation features into a series of structural queries. These queries then
interact with spatial features through region-wise spatial cross-attention.

Our proposed transformer architecture excels at capturing fine-grained struc-
tures and refining coarse pose estimations. Through the analysis of 3D attention
maps, our method further enables a novel function of highlighting spatial local
changes, significantly improving interpretability.

For better benchmarking heterogeneous cryo-EM reconstructions, we present
a novel synthetic dataset of the porcine epidemic diarrhea virus (PEDV) trimeric
spike protein, a primary target for vaccine development and antigen analysis.
We validate CryoFormer on the PEDV spike protein synthetic dataset and
four existing public datasets. Our approach outperforms the state-of-the-art
methods including popular traditional software [49] as well as recent neural ap-
proaches [27,48,75] on both synthetic and experimental datasets. Moreover, our
experiments demonstrate that our method can identify dynamic regions within
structures, thereby enabling more effective analysis of functional areas. We will
release our code and PEDV spike protein dataset.

2 Related Work

Dynamic Neural 3D Representations. Neural Radiance Fields (NeRFs) [40]
and their subsequent variants [25, 41] have achieved impressive results in novel
view synthesis. Follow-up works have since emerged to enhance NeRFs and ex-
pand their applications [62], such as improving rendering quality [2–4, 35, 69],
acceleration [17,65,72], and 3D scene understanding [26,28,36].

Numerous studies have introduced extensions of NeRF for dynamic scenes [15,
33, 34, 37, 45, 60, 70, 73, 74]. Most of these dynamic neural representations either
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construct a static canonical field and use a deformation field to warp this to
the arbitrary timesteps [44, 47, 63, 74], or represent the scene using a 4D space-
time grid representation, often with planar decomposition or hash functions for
efficiency [1, 9, 16,58].

Conventional Cryo-EM Reconstruction. Traditional cryo-EM reconstruc-
tion involves the creation of a low-resolution initial model [30,49] followed by the
iterative refinement [19, 49, 55]. These algorithms perform reconstruction in the
Fourier domain since this can reduce computational cost via Fourier slice the-
orem [6]. When tackling structural heterogeneity, they classify conformational
states into several discrete states [39,54]. While this paradigm is sufficient when
the structure has only a small number of discrete conformations, it is nearly
impossible to individually reconstruct every state of a protein with continuous
conformational changes in a flexible region [46].

Neural Representations for Cryo-EM Reconstruction. Recent work has
widely adopted neural representations for cryo-EM reconstruction [27,31,32,59,
75]. CryoDRGN [75] first proposed a VAE architecture to encode conformational
states from images and decode them by a coordinated-based MLP that represents
the 3D Fourier volume. Such a design can model the continuous heterogeneity of
protein and achieve higher spatial resolution compared with traditional methods.
To reduce the computational cost of large MLPs, SFBP [27] uses a voxel grid
representation. To enable an end-to-end reconstruction, there are some ab-initio
neural methods [10, 31, 32, 76] directly reconstruct protein from images without
requiring pre-computed poses from traditional methods. CryoFIRE [32] attempts
to use an encoder to estimate poses from the input images by minimizing recon-
struction loss directly, but the performance is still limited due to the ambiguity
of conformation and orientation in the extremely noisy image. To model the 3D
local motion, 3DFlex [48] and DynaMight [57] perform reconstruction in the real
domain by using a flow or deformation field to model the structural motion, but
they both require a canonical structure as input.

Transformers in 3D. Transformers have become a ubiquitous learning archi-
tecture capable of capturing long-range dependencies in sequential data, and
have demonstrated remarkable success across a range of applications, includ-
ing natural language processing [7, 12, 64], computer vision [14, 38], and protein
structure determination [23]. Transformers have also been proven to benefit 3D
reconstruction. IBRNet [67] employs a transformer to predict density from fea-
tures to achieve generalizability. NeRFormer [50] utilizes attention modules to
aggregate source views to construct feature volumes. GNT [66] uses transform-
ers to render pixel color. However, these related works only apply transformers
and attention mechanisms to the reconstruction of macroscopic static scenes,
while we have designed deformation-aware cross-attention and region-wise spa-
tial cross-attention to model the dynamic microstructures of biological entities.
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3 Method

We propose CryoFormer, a novel approach that leverages a real domain implicit
spatial feature volume coupled with a query-based transformer architecture for
continuous heterogeneous cryo-EM reconstruction. In this section, we begin by
laying out the cryo-EM image formation model in Section 3.1. We then introduce
the procedural framework of CryoFormer (Figure 1), encompassing orientation
and deformation encoders (Section 3.2), an implicit spatial feature volume VΘ

(Section 3.3) and a query-based transformer decoder (Section 3.4), with the
training scheme described in Section 3.5.

3.1 Cryo-EM Image Formation Model

In the cryo-EM image formation model, the 3D biological structure is represented
as a function σ : R3 7→ R, which expresses the Coulomb potential induced by the
atoms. To recover the potential function, the probing electron beam interacts
with the electrostatic potential, resulting in projections {Ii}1≤i≤n. Specifically,
each projection can be expressed as

I(x, y) = g ⋆

∫
R
σ
(
R⊤x+ t

)
dz + ϵ, x = (x, y, z)⊤ (1)

where R ∈ SO(3) is an orientation representing the 3D rotation of the molecule
and t = (tx, ty, 0)

⊤ is an in-plane translation corresponding to an offset between
the center of projected particles and center of the image. The projection is,
by convention, assumed to be along the z-direction after rotation. The image
signal is convolved with g, a pre-estimated point spread function (PSF) for the
microscope, before being corrupted with the noise ϵ and registered on a discrete
grid of size D × D, where D is the size of the image along one dimension.
Cryo-EM reconstruction is typically performed on a per-structure basis, where
reconstruction algorithms are capable of determining a structure (with motion)
from cryo-EM images obtained in a single experiment. We give a more detailed
formulation for cryo-EM reconstruction in the appendix.

3.2 Orientation and Deformation Image Encoding

Given an input image I, we extract latent features for its orientation and defor-
mation using image encoders. The former is used to optimize the initial coarse
pose estimation, while the latter reflects the conformational state of I. The final
reconstructed density volume will be conditioned on the deformation feature.‡

Orientation Encoding. Initial pose estimations via off-the-shelf software such
as RELION [55] and cryoSPARC [49] can be imprecise when structures exhibit

‡ After training, the inference of our model does not necessarily require a specific
cryo-EM image or its deformation feature. Instead, the user can sample in the latent
space of the deformation feature and obtain a corresponding density volume.
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significant motion. Given an input image I and its associated initial pose esti-
mation ϕ0 = (R0, t0), our orientation encoding improves ϕ0 and makes an opti-
mized pose estimation ϕ̂ = (R̂, t̂). Specifically, our orientation encoder produces
an orientation feature FO in 8-dimensional space. This feature is represented
within 6-dimensional space S2 × S2, accounting for rotations, and the remaining
2 dimensions representing translations. Orientation features can uniquely deter-
mine a pose estimation through spatial transformations, effectively addressing
the discontinuity issues associated with directly predicting the SO(3) group via
a network [77]. We regularize the orientation encoder using the term:

Lpose =

n∑
i=1

(
1

9

∥∥∥R̂i −R0,i

∥∥∥
2
+

1

2

∥∥t̂i − t0,i
∥∥
1

)
. (2)

During training, the orientation encoder estimates the pose of each image to
transform the 3D structure representation for the minimization of the image loss
(Equation (7)). In addition to the pose regularizer, gradients from the image loss
are also backpropagated to the pose encoder. This allows the pose encoder to
find a balance between adhering to the prior knowledge from the initial coarse
estimation and minimizing the image loss, thereby optimizing the initial coarse
estimation.
Deformation Encoding. To extract information related to the conformational
state from a projection I, our deformation encoder maps it into a deforma-
tion feature FD. It subsequently interacts with 3D spatial features within the
query-based deformation transformer decoder (Section 3.4) and thus the final
reconstructed density volume will be conditioned on the deformation feature.

3.3 Real Domain Implicit Feature Volume

In Fourier domain reconstruction, due to the usage of the Fourier slice theorem,
evaluating one pixel of a 2D Fourier image is equivalent to making one single
inference on the center slice of a 3D Fourier volume. In contrast, for real domain
reconstruction, evaluating one pixel of a 2D image involves a projection (numeri-
cal integral) along the z-direction and thus an order of magnitude more inference
than the former. Consequently, directly using coordinate-based MLP in the style
of Fourier reconstruction methods [31, 32, 75] is computationally prohibitive for
real domain reconstruction.

To reduce the computational cost, we adopt multi-resolution hash grid encod-
ing [41]. To be specific, our 3D representation involves a hash grid VΘ parame-
terized by Θ. For any given input coordinate x = (x, y, z)⊤, its high-dimensional
spatial feature is represented as

F S(x) = VΘ (x; Θ) . (3)

This feature encapsulates the local structural information of the specified input
location.
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3.4 Query-based Deformation Transformer

We use Attention to denote the scaled dot-product attention, operating as

Attention(Q,K,V ) = softmax

(
QKT

√
C

)
V . (4)

Previously introduced, for any particle image I, we have extracted its defor-
mation feature FD representing its global conformational state. To recover the
density value σ̂ for an arbitrary coordinate x at this conformational state, we
propose a novel query-based deformation transformer decoder to allow for the
interaction between the global deformation information FD and the local spatial
feature F S(x).
Structure Queries. We introduce learnable structure queries Q ∈ RN×C ,
where N is the number of queries and C is the number of dimensions of each
query. Structure queries serve as a carrier to integrate F S with FD. Specifically,
we partition the 3D space uniformly into N = n×n×n blocks, with each query
corresponding to one of these blocks, where n is the number of blocks along each
axis. We compel each query to focus exclusively on a specific region within the
space via a region-wise spatial cross-attention, which we will detail below.
Deformation-aware Decoder Block. For any image, structure queries Q
first interact with its deformation feature FD in the deformation-aware de-
coder blocks to extract conformational information exclusive to this specific
image. Each deformation-aware block sequentially consists of an inter-query self-
attention block (Attention(Q,Q,Q)), a deformation-aware cross-attention layer,
and a feed-forward network (FFN), where the deformation-aware cross-attention
layer is computed as Attention(Q,FD,Q). We stack three decoder blocks to fuse
deformation cues into structure queries.
Region-wise Spatial Cross-Attention. To determine the density value at a
coordinate x, we first extract its spatial feature F S(x) from the feature volume.
Given that the density value σ(x) depends on the conformational state, we intro-
duce the region-wise spatial cross-attention mechanism. It aggregates the spatial
feature F S(x) and the structural queries Q. Structural queries Q are expected to
incorporate conformational state information from previous blocks. Specifically,
the region-wise spatial cross-attention mechanism operates as:

Attention(GetQuery(x), F̃ S(x),F S(x)), (5)

where GetQuery(x) returns the specific query associated with the spatial coor-
dinate x, based on the region into which x falls. (As previously mentioned, we
uniformly partition the 3D space into blocks, with each query corresponding to
one of these blocks). To avoid the expensive computational cost, we downsample
the F S to obtain a region-wise spatial feature F̃ S to an affordable spatial reso-
lution. After region-wise spatial cross-attention, an FFN projects the queries to
the final density prediction σ̂(x).
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Fig. 2: Visualization of PEDV spike protein dataset. On the left in each pair
are our manually modified atomic models (PDB files) in their intermediate states; on
the right are their corresponding converted density fields (MRC files).

3.5 Training Scheme

To train our system, we first calculate the projected pixel values using the esti-
mated density values and image poses as:

Î(x, y) = ĝ ⋆

∫
R
σ̂
(
R̂⊤x+ t̂

)
dz + ϵ, x = (x, y, z)⊤ (6)

where ĝ is the point spread function (PSF) of the projected image, assumed to
be known from contrast transfer function (CTF) correction [52] in the image pre-
processing stage. The loss function for training is to measure the squared error
between the observed images {Ii}1≤i≤n and the predicted images {Îi}1≤i≤n:

L =

n∑
i=1

∥∥∥Ii − Îi

∥∥∥2
2
. (7)

4 Experimental Results

In this section, we evaluate the performance of CryoFormer for heterogeneous
cryo-EM reconstruction on 2 synthetic and 3 experimental datasets, comparing
it with the state-of-the-art approaches. We also showcase, through experimental
analysis, our method’s ability to locate flexible regions and refine initial pose
estimation. We also validate the effectiveness of our building components through
ablation studies. Please also kindly refer to our appendix and supplementary
video.

4.1 PEDV Spike Protein Dataset

To evaluate CryoFormer and other heterogeneous cryo-EM reconstruction algo-
rithms, we create a synthetic dataset of the spike protein of the porcine epidemic
diarrhea virus (PEDV). The spike protein is a homotrimer, with each monomer
containing a domain 0 (D0) region that modulates the enteric tropism of PEDV
by binding to sialic acids (SAs) on the surface of enterocytes [20] and can ex-
ist in both “up” and “down” states. [22] determined the atomic coordinates and
deposited them in the Protein Data Bank (PDB) [5] under the accession codes
7W6M and 7W73.
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Fig. 3: Heterogenous reconstruction on PEDV spike dataset. Left: Ground
truth volume and reconstructed 3D volumes with SNR = 0.001. Right: Curves of FSC
to the ground truth volumes. Our method produces a more refined reconstruction than
baselines, especially in better recovery of the flexible D0 region under severe noise. In
addition, our approach yields the highest FSC curve.

We utilized Pymol [11] to manually supplement the reasonable process of
the movement of the D0 region in the format of intermediate atomic models
(Figure 2). We converted these atomic models (PDB files) to discrete potential
maps (MRC files) using pdb2mrc module from EMAN2 [61], which were then
projected into 2D images. We then simulate the image formation model as in
Equation (1) at uniformly sampled rotations and in-plane translations. On clean
synthetic images, we add a zero-mean white Gaussian noise and apply the PSF.
We adjust the noise scale to produce the desired SNR such as 0.1, 0.01 and
0.001. We will make the atomic models, density maps, and simulated projections
publicly available.

4.2 Experimental Setup

Implementation Details. We adopt MLPs that contain 10 hidden layers of
width 128 with ReLU activations for both the orientation encoder and the defor-
mation encoder. For the implicit spatial feature volume, we utilized a hash grid
with 16 levels, where the number of features in each level is 2, the hashmap size
is 215, and the base resolution is 16. This hash grid is followed by a tiny MLP
with one layer and hidden dimension 64 to extract final spatial features. For
the query-based deformation transformer, we adopt N = 4096 structure queries
with C = 8 dimensions. For synthetic datasets, we use ground truth poses for all
the methods. For real datasets, we use CryoSPARC [49] for initial pose estima-
tion (following [75]). All experiments including training and testing have been
conducted on a single NVIDIA GeForce RTX 3090 Ti GPU.
Metrics. For quantitative evaluations, we employ the Fourier Shell Correla-
tion (FSC) curves, defined as the frequency correlation between two density
maps [18]. A higher FSC curve indicates a better reconstruction result. For
synthetic datasets, we compute FSC between the reconstructions and the corre-
sponding ground truths and take the average if there are multiple conformational
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Table 1: Quantitative comparison for heterogeneous reconstruction on syn-
thetic and experimental datasets. Spatial resolution (in Å, ↓) is quantified by an
FSC=0.5 threshold for synthetic datasets and 0.143 for experimental datasets. Note
that for the reconstruction resolutions of Spliceosome and Integrin, some baselines
achieve the highest resolution in theory, so we equally report their values.

Synthetic Dataset (Å, ↓) Experimental Dataset (Å, ↓)
Method PEDV0.01 PEDV0.001 1D Motion Ribosome Spliceosome Integrin

CryoDRGN 6.50 19.21 3.45 3.93 8.63 7.43
SFBP 4.29 9.41 2.18 3.94 8.63 8.68
CryoSPARC 4.63 9.70 16.22 8.63 8.84 10.00
3DFlex 4.16 7.90 10.36 4.13 8.63 6.46
Ours 4.13 7.47 2.03 3.80 8.63 6.46

Ours CryoDRGN CryoSPARC SFBP

Fig. 4: Reconstruction of 80S Ribosome. Left: Reconstructed 3D volumes.
Right: Curves of FSC between half-maps. Our method recovers secondary structures
more clearly than baselines, such as the α-helices in zoom-in regions, and achieves the
highest FSC curve.

states. For real experimental datasets for which we can never know what the
“real” ground truth structure is, we compute FSC between two half-maps, each
reconstructed from half the particle dataset. We report the spatial resolutions
of the reconstructed volumes, defined as the inverse of the maximum frequency
at which the FSC exceeds a threshold [53] (0.5 for synthetic datasets and 0.143
for experimental datasets).
Datasets. We evaluate different approaches on two synthetic datasets:

– 1D Motion. The synthetic dataset proposed by [75]. This dataset contains
50, 000 images with size D = 128 (pixel size = 1.0Å) and SNR = 0.1(−10dB)
from an atomic model of a protein complex containing a 1D continuous
motion [75].

– PEDV. Our proposed PEDV spike protein dataset containing 50, 000 image
with size D = 128 (pixel size = 1.6Å), with two different levels of noise scale:
SNR = 0.01(−20dB) and SNR = 0.001(−30dB).

as well as three real experimental datasets:
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Fig. 5: Flexible Reigion Identification on Spliceosome. Left: Visualization of
PCA on deformation features, as well as reconstructed volumes corresponding to three
samples along one axis, exhibiting the structural motions. Right: Visualization of three
channels of the 3D attention map by mapping attention values to the surface color of
reconstructed volumes.

– Ribosome (EMPIAR-10028 [68]), consisting of 105,247 images of the 80S
ribosome downsampled to D = 256 (pixel size = 1.88Å).

– Spliceosome (EMPIAR-10180 [46]), consisting of 327,490 images of a pre-
catalytic spliceosome downsampled to D = 128 (pixel size = 4.2475Å).

– Integrin (EMPIAR-10345 [8]), consisting of 84,266 images of the asymmet-
ric αV β8 integrin downsampled to D = 128 (pixel size = 3.1523Å).

Baselines. We compare CryoFormer against cryoDRGN [75] (MLPs) and Sparse
Fourier Backpropagation (SFBP) [27] (voxel grids) as representatives of coordinate-
based methods, as well as CryoSPARC [49] and 3DFlex [48] as representatives
of conventional software.

4.3 Reconstruction Comparison

We evaluate cryoFormer compared to several state-of-the-art baselines across di-
verse synthetic and real datasets in terms of reconstruction resolution. As shown
in Table 1, our method outperforms all baselines on every dataset. Note that
our method excels on our created challenging synthetic dataset with only 0.01
SNR and surpasses most state-of-the-art approaches on experimental datasets.
In conclusion, our method maintains high reconstruction resolution across vary-
ing levels of noise and motion.
PEDV Spike Protein Dataset. For qualitative comparison, we show recon-
struction results in Figure 3 (left panel). When the input image noise is very
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Pose Error
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Fig. 6: Visualization of pose estimations (Left). We demonstrate the different
training phases of pose refinement. Our predicted poses rapidly converge to imperfect
poses during the pose-only phase and are further refined during the training regular-
ization phase. Qualitative comparison (Right). With regularization of pose during
the training stage, we achieve better reconstruction resolution.

high, cryoDRGN is unable to capture the contours of the protein. The recon-
struction results of SFBP exhibit more voids and defects. Although cryoSPARC
and 3DFlex can obtain the main structure of the protein relatively accurately,
they are incapable of revealing more detailed structures. In contrast, our method
can achieve more refined structures, and even accurately capture the movable
D0 region. Concurrently, the FSC curves in Figure 3 (right panel) quantitatively
demonstrate that the reconstruction result of our method is more refined and
possesses higher resolution compared to those of other methods.
80S Ribosome. As illustrated in the left panel of Figure 4, our method man-
ages to recover the shape and integrity of detailed structures like the α-helices
(as seen in the zoom-in region) in contrast to baseline approaches. The right
panel of Figure 4 shows that our FSC curve consistently surpasses those of all
the baselines, quantitatively demonstrating the accuracy of our reconstructed
details.

4.4 Flexible Region Identification

Our approach enables flexible region location through the analysis of 3D at-
tention maps. Specifically, after reconstruction, we can reshape structure queries
into high-dimensional attention volumes, since it is designed with correspondence
to uniform spatial partitions. The distribution of values across different channels
in this high-dimensional volume has physical interpretations. Certain channels
exhibit higher values in specific areas compared to other regions. These areas
often correspond to flexible regions with local motion. Channels of a certain
structure query after the spatial cross-attention encode the local deformation
information.

We showcase this capability on the pre-catalytic spliceosome dataset in Fig-
ure 5. After reconstructing and performing Principal Component Analysis (PCA)
on deformation features, we obtain three reconstructed volumes corresponding
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Table 2: Quantitative comparison of different pose estimation strategies.
Our method consistently achieves the best performance in terms of rotation error,
translation error, and resolution.

Method Rot. Med/MSE (rad,↓) Trans. Med/MSE (px,↓) Res.(Å,↓)
CryoDRGN-BNB 1.47/1.55 11.18/11.24 4.26
CryoFIRE 5.12/11.26 5.13/6.70 6.23
Ours 0.12/0.12 3.95/4.16 4.10

to three samples along one axis, each situated in different conformational states.
Through mapping to the surface color of these reconstructed volumes, Channel
A corresponds to SF3b, Channel B to Helicase, and Channel C to Foot, as previ-
ously defined in [42]. Thus, we achieve precise localization of interesting flexible
regions.

4.5 Pose Estimation Refinement

To evaluate our approach’s capability of optimizing initial pose estimations
through pose regularization, we generate a dataset with 50,000 projections of
PEDV spike protein with SNR = 0.1 and evaluate our approach on it. We sample
particle rotations uniformly from SO(3) space and particle in-plane translations
uniformly from [−10pix., 10pix.]2 space and simulate imperfect pre-computed
poses by perturbing the ground truth rotations using additive noise (N (0, 0.1I)),
and the translations using another uniform distribution [−5pix., 5pix.]2. We start
the training process with only the pose loss (no image loss) to optimize the ori-
entation encoder to initialize the orientation encoder using initial estimations.
Subsequently, we train the entire model by optimizing the orientation encoder
through both the image loss and pose regularization term, to mitigate the impact
of inaccurate initial estimation and refine pose estimation. Figure 6 visualizes
pose estimations at different stages of the training process. After the pose-only
phase, the pose estimation is consistent with the initial estimation, which is erro-
neous compared to the ground truth. However, at the end of the major training
phase, the pose estimation is very close to the ground truth.

To demonstrate the impact of pose refinement on the quality of reconstruc-
tion, the right side of Figure 6 qualitatively compares the reconstructed volumes
with and without pose regularization. Without regularization to eliminate the
interference of inaccurate poses, the reconstructed volume has poor resolution,
whereas regularization can significantly improve both pose estimation and the
final quality of the reconstruction. We quantitatively compare different strate-
gies of pose estimation. Our baselines include CryoDRGN-BNB [75] which uses
initial pose estimations for initialization and employs the branch-and-bound al-
gorithm to refine them, as well as CryoFIRE [32] which uses a deep network
to predict poses without utilizing initial estimations. As is shown in Table 2,
our method surpasses the baseline methods in terms of reconstruction resolution
and pose error (both rotation and translation error), demonstrating that with the
same coarse initialization, our pose encoder prediction outperforms the search
strategy of CryoDRGN-BNB. Although CryoFIRE similarly uses a network to
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Table 3: Quantitative ablation study. We explore our key design choices, and our
complete model achieves the best reconstruction performance in terms of reconstruction
resolution.

Domain DDB RSCA N Resolution (Å,↓)
Fourier ✓ ✓ 512 7.52
Real ✓ 512 10.36
Real ✓ 512 8.10
Real ✓ ✓ 8 5.22
Real ✓ ✓ 64 4.87
Real ✓ ✓ 512 4.13

predict poses, its inability to utilize initial estimations by nature leads to larger
pose errors and poor reconstruction resolution. Please refer to the appendix for
more studies about pose refinement.

4.6 Ablation Studies

To validate CryoFormer’s key architecture designs, we conduct the following
evaluations on our synthetic PEDV spike protein dataset with SNR = 0.01.
Specifically, we ablate on the reconstruction domain, the deformation-aware de-
coder blocks (DDB), the region-wise spatial cross-attention (RSCA), and the
number of structure queries (N). As shown in Table 3, CryoFormer’s recon-
struction performance is reduced in the Fourier domain compared to the real
domain as query-based transformer architecture is harder to capture globally
changing frequencies in the Fourier domain than capturing local changes in the
real domain. Without deformation-aware decoder blocks or region-wise spatial
cross-attention, simple concatenation for feature aggregation causes structural
queries cannot effectively be fused with deformation or spatial features, thereby
degrading resolution. The quality of reconstruction improves with the increase
in the number of structure queries, with 512(16× 16× 16), the maximum num-
ber our computational resources can afford, achieving the best reconstruction
resolution.

5 Conclusion

We have introduced CryoFormer for high-resolution continuous heterogeneous
cryo-EM reconstruction. Our approach builds an implicit feature volume di-
rectly in the real domain as the 3D representation to facilitate the modeling of
local flexible regions. Furthermore, we propose a novel query-based deformation
transformer decoder to enhance the quality of reconstruction. Our approach
can refine pre-computed pose estimations and locate flexible regions. Quanti-
tative and qualitative experiment results show that our approach outperforms
traditional methods and recent neural methods on both synthetic datasets and
real datasets. In the future, we believe our method can serve as a solid work
in high-resolution and interpretable continuous heterogeneous reconstruction in
cryo-EM.
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