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Abstract

Scanning Electron Microscopes (SEMs) are widely
renowned for their ability to analyze the surface structures
of microscopic objects, offering the capability to capture
highly detailed, yet only grayscale, images. To create more
expressive and realistic illustrations, these images are typ-
ically manually colorized by an artist with the support of
image editing software. This task becomes highly laborious
when multiple images of a scanned object require coloriza-
tion. We propose facilitating this process by using the un-
derlying 3D structure of the microscopic scene to propagate
the color information to all the captured images, from as
little as one colorized view. We explore several scene rep-
resentation techniques and achieve high-quality colorized
novel view synthesis of a SEM scene. In contrast to prior
work, there is no manual intervention or labelling involved
in obtaining the 3D representation. This enables an artist
to color a single or few views of a sequence and automati-
cally retrieve a fully colored scene or video. Project page:
https://ronly2460.github.io/ArCSEM

1. Introduction
We use images captured by a Scanning Electron Microscope
(SEM). SEMs are used for the examination and analysis of
nanoscale structures. An electron gun generates a beam that
thoroughly scans the surface. As the beam interacts with
the surface, it emits signals. The microscope’s detectors
capture these emitted electrons. The quantity of electrons
detected from each point is then converted into correspond-
ing pixel values, resulting in a high-resolution grayscale im-
age that reveals the intricate surface structure. SEM im-
ages share similarities with optical images, exhibiting dif-
fuse and specular reflectance and effects similar to optical
shadowing. The fundamental distinction lies in the particle
flow: in SEM imaging, the particles travel in the opposite
direction compared to optical imaging.

We experiment with multi-view grayscale images of a
pollen granule captured by tilting the sample while keeping
the microscope fixed. However, tilting alters the incident

angle between the electron beam and the surface, which
causes the emitted electrons to vary across regions of the
sample. This induces view-dependent variations in electron
emission and scattering, which are perceived as illumina-
tion changes in the final SEM images.

Leveraging our captured grayscale dataset, we achieve
novel view synthesis (NVS) via a precise 3D representation
of the pollen modeled with 2D Gaussian Splatting (2DGS)
[11]. To address the aforementioned illumination varia-
tions, we apply an image specific affine color transforma-
tion (ACT) to the Gaussians, as proposed by [4]. Based on
the 3D representation, we introduce colors into the scene,
guided by artistic intuition. In addition to our grayscale
dataset, we incorporate up to five color images created by
a professional artist, Martin Oeggerli. These color images
are then used for the colorization of the scene, by adapt-
ing ideas from [41] to propagate the color information via
pseudo-colors and semantic correspondences across views.
We showcase the capabilities of our method, ArCSEM, by
generating expressive colorized novel views of an SEM
scene with artistic guidance.

The key contributions of our work are as follows:
• We obtain a precise and intricate 3D representation of a

pollen captured by SEM, enabling novel view synthesis.
• We achieve 3D colorization of the grayscale 3D scene

using a limited number of manually colored images, en-
abling colored novel view synthesis.
This is a short version of the AI for Visual Arts Work-

shop paper to be presented at the non-archival ECCV Be-
yond workshop in ECCV 2024. The full paper includes a
comparison to other methods, ablation studies, a statement
regarding the limitations of the method, as well as a more
detailed related work section. In this short paper, we focus
on the proposed method.

2. Related work
Colorization techniques can be broadly categorized into two
main approaches: statistical methods [29] and semantic
methods [2, 10, 18, 39]. Beyond 2D images, 3D coloriza-
tion methods have also been developed for meshes [38],
point clouds [6, 20], and voxels [35]. The few works [8, 31]
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Figure 1. Overview of our two-stage approach: (a) Grayscale
training: We fit 2DGS [11] with an image-specific affine color
transformation to the grayscale images calibrated with Reality-
Capture [28]. (b) Colorization: 2DGS depth maps are used to
project colors from limited manually colorized images into 3D
space as pseudo-colors. Together with the input color views, the
pseudo-colors guide the colorization of the grayscale model via
L1, TCM, and CCM loss functions.

that consider the colorization of SEM images are limited to
the 2D domain and work without specific color guidance.
In contrast, we focus on artistic 3D colorization of SEM
images, using specific color inputs, which allows artists to
guide and control the process.

Only one line of works [43, 44] has focused on 3D shape
reconstruction of complex objects from SEM images, par-
ticularly of a cat flea employing traditional photogrammetry
and complex computer graphics techniques, which demand
extensive mathematical calculations and laborious work. In
contrast, our pipeline provides a much simpler method for
representing 3D scenes, it is straightforward and requires no
customization to model grayscale scenes. NVS techniques,
such as Neural Radiance Fields (NeRF) [25], have enabled
the photorealistic rendering of arbitrary views. The versatil-
ity of these 3D representations enabled the development of
various methods for appearance editing with diverse control
modalities. Image-guided approaches [3, 12, 21, 26, 37, 41]
leverage visual references to control the editing process.
Text-based methods [5, 9, 15, 30, 32, 33, 42] employ natu-
ral language descriptions to manipulate scene appearances.
Other methods [7, 17, 19, 24, 27] allow for manual color
specification or tool-based editing. Recently, Gaussian
Splatting [11, 14] has emerged as a breakthrough technique,
representing scenes explicitly with numerous 3D Gaussians
primitives. Providing real-time rendering and competitive
quality, the framework has already enabled several editing
techniques [1, 13, 22, 36]. Our proposed method belongs to
the latter line of works, in contrast to existing approaches
that mainly focus on stylization or color replacement using
extracted color palettes, we build on Ref-NPR [41] which is
more suitable for our grayscale-to-color setting.

3. Method

Our proposed method, illustrated in Fig. 1, employs a two-
stage training process: grayscale 3D scene optimization and
colorization. We start with a grayscale scene representation
by fitting 2DGS on the SEM image dataset calibrated with
RealityCapture [28]. To handle varying illumination, we
apply an affine color transformation to the decoded color,
using image-specific weights and biases. In the second
stage, we use the grayscale model to generate depth maps
and project the artist-provided colors into 3D space. For
views without color data, we use a nearest-neighbor search
to obtain pseudo-colors. Finally, we fine-tune the initial
grayscale model using the color images and the computed
pseudo-colors by keeping the geometry fixed and optimiz-
ing the spherical harmonics coefficients for all degrees us-
ing losses inspired from Ref-NPR [41].

3.1. Grayscale Training

Our grayscale dataset is acquired using SEM. Although
SEM utilizes parallel electron beams, resulting in ortho-
graphic projection, we approximate it using perspective
projection to ensure compatibility with existing NVS meth-
ods. Under this setting, an exceptionally large focal length
of approximately 50,000 pixels is estimated, with the cam-
eras positioned very far from the scene content. We ob-
tained satisfying results using RealityCapture [28] with
shared intrinsic parameters across all images, while allow-
ing for image-specific distortion coefficients.

We build our method based on 2DGS [11], which uses
2D oriented Gaussian disks to represent the scene. 2DGS
succeeded in modeling the SEM images, rendering accu-
rate depth maps and grayscale images. Alternatively, we
also considered 3D Gaussian Splatting [14] which repre-
sents the scene using 3D Gaussians, but encountered issues
especially with visible floaters caused by poor geometry fit-
ting.

To accommodate varying illumination conditions, we
employ an affine color transformation (ACT) as proposed
by [4]. Each Gaussian holds spherical harmonics coeffi-
cients, which are subsequently converted to output intensity
values. Prior to rasterization, we apply an image-dependent
transformation on the decoded illumination, L. During the
subsequent colorization stage, we found that applying this
affine transformation led to a degradation in output qual-
ity, so we omit it in the second stage. The transforma-
tion uses three weights W = {w1, w2, w3} and biases
b = {b1, b2, b3} and is defined as L′ = W · L + b. When
rendering novel views, we average the weights and biases
of the training views, resulting in plausible and consistent
illumination.



3.2. Colorization

Our colorization method is based on Ref-NPR [41], which
was introduced for 3D stylization. We made several key
modifications and enhancements to adapt it to our dataset
and colorization needs. We rely on three components:
pseudo-color supervision for views lacking color informa-
tion, a Template-based Correspondence Module for propa-
gating colors via the grayscale feature space, and a Coarse
Color-Matching Loss to ensure global color consistency.

3.2.1 Pseudo-color supervision.

For color transfer, we first utilize the depth information of
the grayscale model to unproject the input pixels of the col-
ored views into the 3D space. Then, for each pixel in the
other views we compute a pseudo-color as the color of the
closest colored point to its unprojected location. This color
is then used as a supervision signal via the loss defined in
Eq. 1, where Ĉpc denotes the pseudo-color, and Ĉx̂ refers
to the color rendered by the model. If there is no colored
point within a given radius, we exclude the respective pixel
from the loss calculation.

Lpseudo-color =
1

Npc

∥∥∥Ĉpc − Ĉx̂

∥∥∥
1
. (1)

Ref-NPR employs Reference Ray Registration with a
grid system, where colors are assigned to grids and a sin-
gle color is selected for each pixel. However, this approach
does not consider the distance between points during the se-
lection phase; it only filters out pixels that exceed a thresh-
old in the final image, making it difficult to create precise
pseudo-colors and potentially resulting in visual artifacts.

Our approach is designed to accommodate high-
resolution datasets without encountering memory con-
straints. The grid-based method in Ref-NPR becomes com-
putationally infeasible for our data, as the higher number
of required grids to match our cinematic resolution would
exhaust available memory resources.

Ref-NPR also considers the cosine similarity of ray di-
rections in the final image, we found that this factor had
minimal impact on quality on our data. Therefore, we sim-
plified our approach by concentrating on spatial proximity.

Pseudo-colors for the background regions often intro-
duce noise and inconsistencies across images, as the num-
ber of background pixels varies significantly between im-
ages, potentially skewing the loss calculation in Eq. 1. To
address these issues, we employ Segment Anything Model
[16] to generate precise masks of the pollen granule. This
segmentation allows us to effectively extract only the pollen
and eliminate the interference of the background elements.

3.2.2 Template-based Correspondence Module.

We employ TCM proposed by Ref-NPR as a loss function
to propagate colors to the areas that do no have a ground
truth color assigned in the colorized input views, by us-
ing matches in the feature space of the grayscale images.
This loss minimizes the cosine distance between the fea-
tures FÎg

of the rendered color image and a constructed

guidance feature F̂Ig of the view Ig . The grayscale image
Ig is fed into a VGG network [23] to extract the feature
map FIg . The feature maps of the reference colorized im-
ages Sk and their grayscale version Ik are extracted as FSk

and FIk respectively. For each location (i, j) in the guid-
ance feature map F̂

(i,j)
Ig

, we consider the grayscale feature

F
(i,j)
Ig

and search for the nearest grayscale feature across

reference views F (i∗,j∗)
Ik

and take the corresponding feature

of the colorized image F
(i∗,j∗)
Sk

, as defined in Eq. 2.

F̂
(i,j)
Ig

= F
(i∗,j∗)
Sk

,

where(i∗, j∗), k = arg min
(i′,j′),k′

dist
(
F

(i,j)
Ig

, F
(i′,j′)
Ik′

)
, (2)

LTCM = dist(FÎg
, F̂Ig ) (3)

3.2.3 Coarse Color-Matching Loss.

Although TCM helps estimate color for occluded regions, it
can result in global color inconsistencies and mismatches.
To address this limitation, we also consider a coarse color-
matching loss [41] that operates at the patch level to mini-
mize color differences, as defined in Eq. 4. Using the index
(i∗, j∗) obtained in Eq. 2, let C̄ denote the average color of
a patch, and CSk

and CIg refer to the patches in the input
color image and rendered image respectively.

Lcoarse-color =
1

N

∑
i,j

∥C̄(i,j)
Ig

− C̄
(i∗,j∗)
Sk

∥22. (4)

3.2.4 Optimization.

For views with available colorized image, we directly opti-
mize the L1 loss between rendered and input images. For
the other views, our final loss function is defined in Eq. 5.
λs are respective weights for each loss term.

L = λpcLpseudo-color + λTCMLTCM + λccLcoarse-color (5)

4. Experiments
4.1. Dataset

Our dataset comprises 32 high-resolution (3072× 2048)
SEM images of a pollen, captured along two primary axes.
The horizontal axis consists of 20 images spanning from left



(a) Grayscale (b) Color

Figure 2. Our dataset. (a) A subset of 18 out of 32 grayscale images, arranged left to right in the first two rows, and front to top in the
bottom row. (b) All manually colored images shown in the following order: leftmost, center, rightmost, angled, and top view

GT

Figure 3. Novel views and closeups generated by our method.
Top: All input color images. Bottom: Synthesized novel views at
3072×2048 resolution, with corresponding closeups.

to right, providing a comprehensive lateral view, while the
vertical axis includes 12 images, with the camera moving in
an arc from the frontal view to the top view of the pollen.
We illustrate 18 of these grayscale images in Fig. 2(a),
and use the entire set of 32 images as our training dataset.
Fig. 2(b) shows colorized versions of 5 images, manually
colorized by an artist, Martin Oeggerli.

4.2. Implementation details

The grayscale 2DGS and 3DGS models are trained for
60,000 epochs, with 20,000 additional epochs for coloriza-
tion. We initialize the ACT by adding small random pertur-
bations to the identity transformation (weights wi = 1 and
biases bi = 0, for i = 1, 2, 3) and optimize the parameters
using a learning rate of 0.0001.

4.3. NVS and Colorization

We qualitatively compare the backbones on grayscale novel
view synthesis and quantitatively on rendering the training

Model PSNR (↑) SSIM (↑) LPIPS (↓)

3DGS [14] 37.50 0.902 0.461
2DGS [11] 35.25 0.867 0.511
2DGS + ACT (Ours) 36.32 0.890 0.489

Table 1. Evaluation of rendered images. 3DGS and our method
achieve the best quantitative scores for reproducing the training
views, demonstrating the ability of modelling SEM images.

views by evaluating common image quality metrics: PSNR,
SSIM [34], and LPIPS [40].

All models were trained at the full 3072×2048 resolution.
Although the quantitative evaluation presented in Tab. 1 in-
dicates that and 3D Gaussian Splatting (3DGS) [14] outper-
forms in terms of rendering quality of the training views,
2DGS produces superior results in terms of perceived quali-
tative novel view quality. Moreover, the integration of ACT
improves the results of 2DGS across all considered met-
rics. To obtain the final result, we trained our model with
five color images at the original resolution (3072×2048).
The generated novel views and corresponding close-ups are
shown in Fig. 3. Our method accurately captures fine de-
tails such as black outlines of small circular protrusions at
the center and the gradual transition of red hues from cen-
ter to periphery. Overall, our method achieved uniform and
high-quality colorization across the entire scene.

5. Conclusion
We achieved cinematic colorization of pollen images cap-
tured by a Scanning Electron Microscope. Our approach,
which incorporates color projection onto 3D space, affine
color transformation, a Template-based Correspondence
Module, and a Coarse Color-Matching loss, demonstrated
high quality performance on our dataset. From an artis-
tic perspective, introducing color to a monochrome realm
offers a visually arresting and mesmerizing experience.
Moreover, our method particularly enables us to reduce



the number of viewpoints artists need to color manually.
By eliminating the manual annotations through our novel
view synthesis process, our approach not only enhances ef-
ficiency but also opens new creative possibilities for artists.
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