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Abstract

Reconstructing endoscopic scenes is vital for medical
purposes, such as post-operative assessments and educa-
tional training. Recently, neural rendering has emerged as
a promising method for reconstructing endoscopic scenes
involving tissue deformation. Yet, current techniques exhibit
major limitations, such as reliance on static endoscopes,
limited deformation, or the need for external tracking de-
vices to obtain camera pose data. In this paper we introduce
a novel solution that can tackle these challenges posed by
a moving stereo endoscope in a highly deformable setting.
Our method divides the scene into multiple overlapping 4D
neural radiance fields (NeRFs) and uses a progressive op-
timization approach via optical flow and geometry supervi-
sion for simultaneous reconstruction and camera pose es-
timation. Tested on videos of up to fifteen times longer
than what prior work experiment on, our method greatly im-
proves usability, extending detailed reconstruction to much
longer surgical videos without external tracking. Com-
prehensive evaluations using the StereoMIS dataset show
that our method substantially enhances novel view synthe-
sis quality while maintaining competitive pose accuracy.

1. INTRODUCTION

Visually and geometrically accurate reconstructions of sur-
gical scenes are crucial for various computer vision and
AR/VR applications such as post-surgical longitudinal as-
sessment [16], surgical training [14], and data generation
for other learning-based computer vision and robotics appli-
cations [18]. However, endoscopic videos present a range
of visual and practical challenges, including strong non-
homeomorphic deformations, prolonged recording times,
and the difficulty of determining camera positions. These
challenges often lead to a reliance on external tools for ac-
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quisition, diminishing the ease of use and practicality of the
reconstruction frameworks.

Recent methods for 4D endoscopic reconstruction and
novel view synthesis [37, 39–41] assume a static camera or
use forward kinematics of a robotic endoscope to acquire
poses in this highly dynamic setting. This limits their ap-
plicability to real-life surgical recordings, which can exhibit
substantial camera movement. Additionally, acquiring cam-
era poses from robot kinematics can also be problematic as
they are often inaccurate and require refinement [8]. To ad-
dress these limitations, we propose FLex, a novel NeRF-
based architecture that handles the complex setup of a mov-
ing endoscope in a dynamic surgical environment. FLex
introduces an implicit scene separation into multiple over-
lapping 4D neural radiance fields (NeRFs) and employs a
progressive optimization scheme for joint 3D reconstruction
and camera pose estimation from scratch. Extensive evalu-
ations on the StereoMIS [11] dataset demonstrate that FLex
significantly improves the quality of novel view synthesis
while maintaining competitive pose accuracy, showcasing
its potential for practical surgical applications.

To summarize, our contributions are:
• A novel NeRF architecture for dynamic reconstruction in

highly deformable endoscopic scenes without the need
for camera pose information, accomplished by progres-
sive optimization and optical flow supervision.

• An efficient scaling method that splits the scene into mul-
tiple overlapping 4D models, enabling detailed recon-
struction of theoretically unlimited length dynamic sur-
gical videos.

• Significant improvement over prior State-of-the-art in
novel view synthesis with competitive accuracy in cam-
era pose estimation on the StereoMIS dataset.

2. Related Work

2.1. Static Reconstruction

Traditionally, camera poses and scene geometry are esti-
mated by extracting and matching features from images,
then triangulating their 3D positions, as exemplified by
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Figure 1. Overview of our proposed method. k indexes the frames along the temporal dimension. We obtain stereo depth images and
forward/backward optical flow from RAFT [32] and use it during our optimization. The arrows symbolize which components are used
for which optimization, where backward/forward optical flow and induced depth are used to optimize the camera poses (green) and stereo
images, depth and optical flow are used to optimize the radiance fields (orange).

COLMAP [28], which uses SIFT [19] features in a sequen-
tial pipeline. Recently, methods like VGGSfM [35] and
Dust3R [36] have advanced this process by using fully dif-
ferentiable approaches. VGGSfM [35] recovers all cameras
simultaneously based on 2D point tracks and optimizes ge-
ometry and poses globally. Dust3R [36] uses a transformer
architecture to regress point maps from image pairs and
aligns them in multi-view cases.

Poses and geometry from the aforementioned methods
often initialize Neural Radiance Fields (NeRFs) [22], which
optimize a dense 3D representation in an MLP for render-
ing novel viewpoints. They also initialize Gaussian Splat-
ting methods [12]. Some NeRF approaches [23, 34, 38],
like BARF [15] and LocalRF [21], jointly optimize camera
poses and 3D representations without needing known poses.
BARF [15] uses filtered positional encoding to smooth gra-
dient flow, while LocalRF [21] optimizes local scene rep-
resentations with additional supervision. Block-NeRF [31]
also optimizes overlapping scene representations and poses
but assumes only slight pose inaccuracies. All these meth-
ods assume static scenes, making them unsuitable for endo-
scopic reconstruction.

For our work we take inspiration from LocalRF [21] and
choose to represent our endoscopic scenes as multiple local
representations but change the underlying network architec-
ture to also handle dynamic scene content.

2.2. Dynamic Reconstruction

Reconstructing dynamic scenes with non-rigid motion is
challenging due to the breakdown of 3D consistency,
making traditional SfM and NeRF approaches ineffec-

tive. Shape-from-Template [3, 7] and Non-Rigid-Structure-
from-Motion (NRSfM) [1, 4, 33] methods attempt to ad-
dress this by incorporating spatial and temporal priors, but
they rely on accurate 2D point tracks or 2D-3D matches.
Recently, NeRFs have been used for dynamic scenes, either
by decoupling deformations from scene geometry [24] or
adding time as an input [10]. More recently, some works
utilize an explicit scene representation by including a learn-
able 4D feature volume [5, 9]. However, most methods rely
on prior pose information, making them vulnerable to in-
accuracies. RoDyNeRF [17] addresses this by jointly opti-
mizing poses and reconstruction, but it assumes some static
content, which is unsuitable for constantly moving environ-
ments like endoscopy.

2.3. Reconstructing Endoscopic Scenes

Prior works explore explicit representations like point
clouds from visual odometry [30] and SLAM [26] for cam-
era tracking and reconstruction, but these methods strug-
gle with incomplete geometry when rendering new views.
EndoNeRF [37] was the first to adapt dynamic NeRF [24]
for endoscopic scenes, followed by EndoSurf[41], which
uses a signed-distance function, and LerPlane [40]and For-
Plane [39], which employ explicit data structures [5, 6, 9]
for faster optimization and rendering. However, these
approaches rely on external camera pose measurements,
which are hard to obtain in endoscopic environments.

FLex, along with concurrent work BASED [27], is
among the first to investigate joint pose optimization for
dynamic endoscopic scenes. FLex also scales efficiently
to long sequences, tested on surgical recordings with up
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Figure 2. Joint progressive pose and local dynamic radiance fields
optimization. Spatial extents clustered within the bounding boxes
of different colors represent the spatio-temporal domain of the cor-
responding local radiance fields. The arrow on the camera trajec-
tory shows the temporal direction.

to 5,000 frames, unlike prior works limited to 300 frames.
This makes FLex a significant step toward dynamic neural
rendering in real surgical setups.

3. Method

3.1. Overview

Given a rectified stereo-endoscopic video, our goal is to
reconstruct the 4D scene accurately without prior camera
pose information. For this, we propose a new method
FLex, standing for Flow-optimized Local Hexplanes, de-
picted in Fig. 1, which combines advancements from recent
NeRF literature to build multiple smaller dynamic models
that are progressively optimized. In contrast to prior work
[37, 39, 41], we do not have one unified representation of
the scene but multiple smaller overlapping ones. Further-
more, we adopt a progressive optimization scheme that en-
ables the optimization of poses from scratch. Since endo-
scopic environments often have textureless surfaces which
make geometry optimization from photometric consistency
difficult we additionally incorporate supervision through
optical flow and stereo depth priors.

3.2. 4D Scene Representation

NeRFs [22] implicitly model a 3D scene utilizing differen-
tiable volume rendering to predict pixel colors. They can be
adapted to a 4D scene representation by adding the timestep
k as an additional input to the model. We choose HexPlane
[5] as our local model, which represents a dynamic scene
using an explicit 4D feature grid paired with an implicit
MLP.

3.3. Progressive Optimization

Endoscopic videos pose challenges for NeRF architectures
due to their reliance on external tools for pose estimation
and the potential for arbitrarily long sequences in dynamic
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Figure 3. Qualitative results on a 1,000 frame scene with breathing
deformations and camera motion. Best viewed in digital version
and zoomed in.

environments. To address these, we introduce a joint pose
and radiance fields optimization scheme that combines pro-
gressive optimization and dynamic allocation of local Hex-
Plane models, inspired by LocalRF [20] and visualized in
Fig. 2. We sequentially add frames, while optimizing their
pose and local HexPlane model, until a certain number of
frames is reached or the camera pose moves to far from the
initial frame. We then instantiate a new local model, where
the process starts over. During inference contributions from
overlapping models are blended based on proximity.

3.4. Training Objectives

We optimize our method with a combination of photomet-
ric Lrgb, depth Lz and optical flow losses Lf , which are
balanced by factors �z,f :

L = Lrgb + �zLz + �fLf (1)

The exact loss formulations are clarified in the supple-
mentary material.

4. Experiments

4.1. Dataset and Evaluation Metrics

We assess the efficacy of our approach using the publicly
available StereoMIS [11] dataset, recorded using a stereo
endoscope of a da Vinci Xi robot; ground-truth camera tra-
jectories are measured using the forward kinematics. In to-
tal we extract five sequences for general comparison, each
1,000 frames long (⇠29s). Furthermore, we create two ad-
ditional longer sequences (5000 & 4000 frames) to study
the method’s behavior given a larger temporal and spatial
extent, which are discussed in the supplementary material.
We report PNSR, SSIM and LPIPS [42] (both AlexNet [13]
and VGG [29]) metrics, as well as L1-Distance in mm to



Model ATE-RMSE # RPE-Trans # RPE-Rot #
Robust-Pose Estimation [11] 2.164± 2.68e� 1 0.073± 3e� 5 0.043± 2e� 6
LocalRF†2 [20] 7.704± 1.506 0.160± 8e� 4 0.119± 2e� 5

FLex w/ Pose Optim. (Ours) 2.565± 1.6e� 1 0.127± 9e� 4 0.102± 4e� 6e

Table 1. Average Pose accuracy on StereoMIS dataset. ATE-RMSE and RPE-Trans are in mm, RPE-Rot is in degrees. The best results are
marked in bold, second best are underlined. Our method improves substantially over LocalRF and performs close to the fully supervised
Robust-Pose-Estimation, which was trained on the Stereo-MIS Dataset.

Method PSNR " SSIM " LPIPSa # LPIPSv # L1-Distance #
EndoNeRF [37] 21.99 0.590 0.496 0.514 �
EndoSurf [41] 25.18 0.622 0.528 0.529 8.105
ForPlane [39] 30.35 0.783 0.208 0.301 23.717
LocalRF†2 [20] 27.41 0.781 0.245 0.288 4.576
HexPlane†1 [5] 30.85 0.819 0.211 0.273 1.532

FLex w/o Pose Optim. (Ours) 31.10 0.836 0.200 0.244 1.456
FLex w/ Pose Optim. (Ours) 30.62 0.818 0.179 0.245 1.273

Table 2. View synthesis quality on StereoMIS dataset. The metrics are computed as an average for five 1,000 frame sequences. L1-Distance
is computed between the synthesized and the ground truth depth images in mm. The best result for each metric is marked in bold, while
second best is underlined.

evaluate geometry reconstruction. We consider the stereo-
estimated depth as ground truth since a measured depth
is not available. For evaluating camera pose accuracy we
report root-mean-squared absolute trajectory error (ATE-
RMSE), relative translational and rotational pose errors
(RPE-Trans and RPE-Rot).

4.2. Implementation Details

We ensure equal model capacity for all methods using ex-
plicit data structures [5, 20, 39], meaning all those methods
have equal feature grid dimensions spatially and proportion-
ally to the covered image sequence for the temporal dimen-
sion. This is to make any results more comparable, since
a higher capacity can achieve better results. We also make
small changes to HexPlane and LocalRF to make them us-
able in an endoscopic setting, indicated by †1,2. Where we
do not optimise for the poses as well, we use Robust-Pose
Estimation [11] to estimate the camera poses. More imple-
mentation details can be found in the supplementary mate-
rial.

4.3. Quantitative and Qualitative Results

We conduct a comprehensive comparison of the proposed
method against the latest published state-of-the-art (SoTA)
NeRF methods designed for endoscopy [37, 39, 41] and
two additional baselines [5, 20] that are not specifically
designed for endoscopy. The results in Table 2, summa-
rizing the average results across all 5 scenes, demonstrate

that FLex without pose optimization consistently outper-
forms all baselines and notably surpasses the current en-
doscopic SoTA, ForPlane, by 5.3 SSIM while achieving
substantially better geometry reconstruction as measured by
L1-Distance. These quantitative findings are substantiated
by our qualitative results presented in Fig. 3, highlighting
that FLex renders images with clearer high-frequency de-
tails and less blur than the most competitive baselines.

4.4. Pose Accuracy

We compare FLex against a SoTA method in visual odom-
etry for endoscopic scenes, Robust-Pose Estimation [11],
and the original LocalRF [21] on 3 sequences each with
1,000 frames. As highlighted in Table 1, FLex performs
competitively achieving close results to Robust-Pose Esti-
mation and outperforms LocalRF by a good margin. How-
ever, please note that this task is not the main focus of our
work and can be improved using robust optimization and
globally consistent methods in the future.

5. Conclusion

In this work, we present FLex, a novel method for recon-
structing pose-free, long surgical videos with challenging
tissue deformations and camera motion. Our approach suc-
cessfully eliminates the reliance on prior poses by jointly
optimizing for 4D reconstruction and camera trajectory
via optical flow and depth supervision in a progressive
manner. FLex improves upon the scalability of dynamic
NeRFs for larger scenes thus becoming more applicable to



boundlessly long surgical recordings, while improving over
current methods on the StereoMIS dataset in terms of novel
view synthesis with competitive pose accuracy. We believe
that FLex can pave the way towards more easily accessi-
ble, realistic and reliable 4D endoscopy reconstructions
to improve post surgical analysis and medical education.
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