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Abstract. Thermal scene reconstruction exhibits great potential for
diverse applications, including building energy consumption analysis and
non-destructive testing. However, existing methods typically require dense
scene measurements and often rely on RGB images for 3D geometry recon-
struction, with thermal information being projected post-reconstruction
leading to disparities between the geometry and temperatures of the recon-
struction and reality. To address this challenge, we propose ThermoNeRF,
a novel multimodal approach based on Neural Radiance Fields, capable of
rendering new RGB and thermal views of a scene jointly. To overcome the
lack of texture in thermal images, we use paired RGB and thermal images
to learn scene density, while distinct networks estimate color and temper-
ature information. Furthermore, we introduce ThermoScenes, the first
dataset to palliate the lack of available RGB+thermal datasets for scene
reconstruction. Experimental results validate that ThermoNeRF shows
an average mean absolute error of 1.5°C for temperature estimation, an
improvement of over 50% compared to using concatenated RGB+thermal
data. Code and dataset| are available through anonymous links.

Keywords: Thermal Imaging - Neural Radiance Fields - 3D Reconstruc-
tion - Multimodality

1 Introduction

Since their introduction by Mildenhall et al. |16], Neural Radiance Fields (NeRFs)
have achieved great success in 3D reconstruction as well as novel view synthesis
and have been extended to diverse tasks |5} [21} 25|13} |22} [10]. While most NeRF
models learn an implicit representation of a scene from a sparse set of RGB images,
NeRFs have also been successfully extended to other sensor modalities |26} [19)
23}, 126}, |6]. However, while it has been demonstrated that NeRFs can learn from
more than a single modality at a time (e.g. Poggi et al. [19]), multimodal NeRFs
also often depend on the presence of similar features between the modalities |19].

In this paper, we focus on RGB and thermal images. Thermal cameras capture
radiation emitted by objects as function of temperature. Since thermal radiation
is scattered and reflected from various points, thermal images naturally lack
texture and show low edge contrast—an effect known as ghosting [1].
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Fig.1: We propose ThermoNeRF, a multimodal NeRF-based approach using paired
thermal and RGB images. ThermoNeRF demonstrates enhanced thermal information
estimation compared to non-multimodal methods.

Hence, despite the benefits of 3D thermal representations in infrastructure
inspection and monitoring |§|, non-destructive testing |§|, and agriculture ,
models are primarily constructed using photogrammetry, which requires large
amounts of RGB data or advanced equipment . Moreover, due to
their challenging nature, thermal images are often not considered during ge-
ometric reconstruction, and temperature information is only projected post-
reconstruction , leading to discrepancies between the geometry and tempera-
tures. Additionally, the development of thermal scene reconstruction algorithms
is hindered by the lack of benchmark datasets specifically designed for this task.

To address the gaps outlined above, we propose ThermoNeRF (Thermographic
NeRF), the first multimodal NeRF model capable of rendering unseen views
in both RGB and thermal modalities (see Fig. . The design of our approach
is guided by the specific properties of thermal images. ThermoNeRF uses a
shared density MLP that leverages the visual features of the RGB modality to
learn the geometry of the scene while ensuring consistency with the thermal
measurements. On the other hand, color and thermal information are learned
through decoupled MLPs, preventing the influence of colors on the estimated
temperatures, and vice-versa. In addition, we also introduce ThermoScenes, the
first paired thermal-RGB dataset comprising ten diverse scenes—six indoor and
four outdoor scenes.

Our contributions are summarized as follows:

— We propose ThermoNeRF, the first multimodal NeRF capable of rendering
both thermal and RGB views jointly.

— We conduct extensive experiments to validate how ThermoNeRF’s architec-
ture allows the RGB modality to guide the density estimation for thermal
reconstruction while preventing information leakage between both modalities.
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Fig. 2: ThermoNerf architecture; in red are parts of the network related to the generation
of thermal images, while blue represents the parts related to the generation of RGB
images. The MLPy), is only dependent on the intermediate features f as input. A is
appearance embeddings that accounts for difference in exposure for RGB images.

— We provide ThermoScenes, the first RGB+thermal images dataset for 3D
scene reconstruction and novel view synthesis, featuring ten scenes with
diverse temperature ranges and types of objects.

— Finally, we present a comprehensive evaluation covering both temperature
estimation and reconstruction quality on unseen poses.

Our results demonstrate improved temperature estimation with no loss in
reconstruction fidelity when compared to models trained using only thermal
images or concatenated RBG-+thermal images as input.

2 ThermoNeRF

In this section, we present ThermoNeRF, a NeRF model capable of learning
an implicit scene representation in both thermal and RGB, from a sparse set
of RGB and thermal images. To synthesize realistic and accurate RGB and
thermal novel views, ThermoNeRF retains geometric features captured by the
RGB modality, while ensuring that temperature estimates are independent of
scene color variations. Our design choices are guided by two properties of thermal
images: 1) Thermal images are inherently soft and textureless. 2) Temperatures
are independent of the viewing direction.

Refer to Fig. 2] for a flowchart of the method; implementation of the model
and evaluations can be found onlind!]

2.1 Thermal Image Rendering

As depicted in Fig. [3] while RGB information can be view-dependent due to non-
Lambertian effects, thermal cameras measure thermal radiation and convert it to
temperature, which is invariant with respect to the viewing direction. Therefore,

! mttps://github.com/Schindler-EPFL-Lab/thermo-nerf
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Fig. 3: Non-Lambertian effects—i.e. light reflections—present in the RGB images (left)
depend on the angle of view and are not present in thermal images (right). Furthermore,
textures and edge features in the thermal images are soft due to the ghosting effect, as
opposed to the sharpness of the RGB image and its background.

ThermoNeRF uses separate MLPs for each modality: MLPy;,, predicts tempera-
tures along each ray, while MLP,,}, predicts RGB values. Since temperatures are
independent of the viewing direction, MLPy), only takes the intermediate features
f of MLPgeyns as input, while MLPy;, receives f, ¢sg and A—see Fig.
Furthermore, as seen in the thermal images in Fig. 3] the ghosting effect
makes thermal images soft and textureless. Consequently, while textures and sharp
geometric features in RGB images allow NeRF models to accurately estimate
scene density, NeRF struggles to learn densities solely from thermal images—see
Fig. [B] for experimental results of training Nerfacto on thermal images only.
Therefore, in ThermoNeRF, a single density MLP gep,5 is shared by the modalities,
enabling the network to construct a geometric representation informed by RGB
information while ensuring geometric consistency with the thermal modality.
Formally, ThermoNeRF is defined as follows:

[Uv f] = MLPden5(¢H (X))7
c = MLPrgb(f? ¢SH(d)5A)a (1)
t = MLP,(f),

where ¢ denotes the predicted temperature values and A is appearance em-
bedding.

2.2 Loss Functions

We use separate reconstruction loss functions for each modality. The final recon-
struction loss L is expressed as the sum of the Mean Square Error (MSE) losses
of the RGB and thermal outputs, respectively denoted L,g, and Lyy,. Similar to
Nerfacto, we add the interlevel and distortion losses, which were initially used in
MIP-NeRF 360 , to optimize the proposal sampler and to reduce distortions
respectively. Therefore, our final loss is defined as follows:

L = Ligh, + Lin + Laist + Linterl. (2)
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3 ThermoScenes Dataset

We introduce ThermoScenes, a new dataset comprising paired RGB and thermal
images for ten scenes (four outdoor and six indoor) with diverse temperature
ranges. Images are collected using a FLIR One Pro LT which captures
calibrated pairs of RGB and thermal images. The FLIR One Pro LT thermal
camera operates within -20 °C to 120 °C, with a thermal accuracy of + 3 °C.

We assess the precision to be approximately +0.14°C. To calculate the pre-
cision of our thermal camera, we fix the camera at a position and capture 20
consecutive images of a RaspberryPi connected to power for at least 10 minutes
to ensure thermal stability. Our precision is then the average standard deviation
of the temperatures of each pixel across the 20 images.

Table 1: Summary of the collected ThermoScenes dataset showing example views with
paired RGB and thermal images and the temperature range for each scene.

Scene RGB Thermal #views Temp. Scene RGB Thermal #views Temp.

range range
Heated 95 (train) 23.8°C  Hot Water 77 (train) 20.0°C
Water Cup 13 (test) 68.6°C  Kettle 10 (test) 87.3°C

==

Frozen ‘ \ * 133 (train) -16.2°C  Melting 85 (train) 0.4°C
Ice Cup : 19 (test) 23.1°C  Ice Cup 12 (test) 25.5°C
Building 107 (train) -62.5°C* Building 84 (train) -15.7°C
(Spring) W 15 (test) 19.7°C  (Winter) 12 (test) 15.6°C
Double 83 (train) 21.0°C  Raspberry 111 (train) 22.3°C
Robot 11 (test) 29.3°C  Pi 15 (test) 41.8°C
Exhibition 119 (train) -11.3°C Trees | 73 (train) -8.4°C
Building 16 (test) 14.0°C - " 10 (test) 11.8°C

*The values are outside of its operating range on the clear sky. Due to the sky’s
variations of atmospheric radiation, the readings are subject to systematic inaccura-
cies . We clip these values to the minimum of the operating range (-20°C). However,
our data can be post-processed for more accurate estimates on the sky .

Tab. [I] provides a summary of the ThermoScenes dataset. The test set for
each scene comprises one-eighth of the total number of images, with test views
uniformly sampled across the camera poses. ThermoScenes is publicly availableﬂ

% https://zenodo.org/records/10835108


https://zenodo.org/records/10835108

6 M. Hassan et al.

4 Experiments

We conduct a comprehensive evaluation of rendered novel views using Ther-
moScenes. This section details the evaluation metrics, compares baselines, and
discusses results. Refer to the supplementary material for results on RGB.

4.1 Evaluation Metrics

We assess the accuracy of the rendered temperatures by calculating the Mean
Absolute Error (MAE). Given that thermal images often display uniform tem-
perature distributions outside the regions of interest (ROI), calculating the MAE
across the entire image may disproportionately emphasize the ambient back-
ground temperature. From an application standpoint, the temperature of the
ROI is crucial for temperature assessment [4]. Therefore, we also report the
MAE;,.;, the MAE computed over the region of interest. We use Otsu’s method
[17] to determine the optimal threshold that distinguishes the ROI pixels from
the background. We also report the standard image quality metrics to evaluate
the reconstruction quality for RGB and thermal images.

4.2 Baselines

We conduct experiments to evaluate the two design choices, i.e. (1) the necessity
of multimodality, as thermal images alone cannot accurately estimate the scene
density due to lack of texture details, and (2) the decoupling of the RGB and ther-
mal modalities, stemming from the physical independence between temperature
and color information. Given that ThermoNeRF is based on Nerfacto, we define
two baseline methods derived from Nerfacto: Nerfactoy, and Nerfactorgh i tn.
Nerfactoyy, is trained with thermal inputs only. It processes thermal images as
single-channel grayscale images through Nerfacto’s standard pipeline. It highlights
the importance of incorporating the RGB modality.

Nerfacto,gh+th takes both RGB and thermal modalities as inputs by concatenat-
ing them into four-channel images and optimizes the concatenated RGB-thermal
images without employing separate MLPs for optimizing each modality. This
highlights the importance of disjoint optimization of the modalities.

4.3 Thermal View Synthesis

Tab. 2] provides a comparative analysis of our method’s performance for novel
view synthesis for the thermal modality on the ThermoScenes dataset.

Tab. [2 reports the average per-pixel MAE,; and MAE of thermal views syn-
thesis on the test set. With an average MAE of 0.66°C, ThermoNeRF significantly
outperforms Nerfactorgp¢n (1.54°C) and Nerfactos, (2.89°C). When trained on
thermal images alone, Nerfactoy, fails to learn an accurate representation of the
scene (as visible in Fig. [4) and has the lowest image quality and temperature
estimation results. On the other hand, thanks to the concatenation of RGB
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Table 2: Quantitative comparison of our method (ThermoNeRF) versus Nerfactosn and
Nerfactorgb+tn on thermal novel view synthesis across the ten scenes in ThermoScenes.

Heated Heated  Freezing Melting Building Building Double Raspberry Exhibition

Metric ~ Method Trees Avg
Water Cup Water Kettle Ice Cup Ice Cup (Spring) (Winter) Robot Pi Building
Nerfactogn 23.68 29.25 23.34  18.50  20.30 22.80 10.49 18.08 23.88  20.91 21.12
PSNR 1 Nerfactorghitn  29.76 31.80 22.9  32.70  20.60 28.47  29.82 24.3 27.74  31.48 27.96
ThermoNeRF 32.05 34.04 30.67 3224 26.63 28.75 30.75 31.80 33.79 31.07 31.18
Nerfactogn 0.71 0.89 0.95 0.93 0.91 0.87 0.45 0.71 0.94 0.92 0.83
SSIM 1 Nerfactorgp i tn 0.83 0.91 0.96 0.98 0.89 0.89 0.89 0.82 0.95 0.94 091
ThermoNeRF 0.92 0.94 0.97 0.98 0.92 0.88 0.95 0.96 0.97 0.94 0.94
Nerfactoin 13.57 5.18 6.75 12.27 6.36 1.80 2.85 4.82 1.29 1.60 5.65
MAE;oi | Nerfactorgbtn 5.35 3.25 10.33  1.26 6.54 0.86 1.06 1.62 1.00 0.31  3.16
ThermoNeRF 2.10 2.76 3.26 1.57 1.88 0.66 0.91 1.28 0.31 0.25 1.50
Nerfactotn 1.82 4.19 1.67 1.97 6.74 1.87 5.33 2.25 1.56 1.49 2.89
MAE |  Nerfactorgb+tn 0.87 1.54 2.01 0.46 6.59 0.89 0.55 1.15 0.97 0.34  1.54
ThermoNeRF 0.53 0.71 0.57 0.29 2.40 0.76 0.34 0.27 0.35 0.33 0.66

and thermal information, Nerfacto,e,+¢n obtains better results than Nerfactoy:
MAE,q; of 3.16°C, against 5.65°C for Nerfactos,. However, the estimated tem-
peratures are impacted by the joint optimization of both modalities in the same
MLP, as evidenced in Fig. [§] where the error in temperature prediction is high
on the ROI. On the contrary, the average MAE,,; and MAE for ThermoNerf
are 1.5°C and 0.66°C, respectively, marking a significant improvement over the
second-best result of 3.16°C and 1.54°C.

Additionally, we visually compare examples of test views rendered by each of
the baseline methods as well as by ThermoNeRF (see Fig. [4)). We observe noisy
renderings with Nerfactoyn, while Nerfacto,e4¢n generates sensible reconstruction
of the geometry—some scenes such as the Double Robot scene being noisier than
others. However, temperature predictions are influenced by the RGB modality,
leading to biased temperature values and sharper edges compared to the ground
truth for the Building (Spring). Moreover, we can see in the rendered thermal
images, elements from the RGB view that are invisible in the ground truth thermal
images—this is especially visible in the Raspberry Pi scene with the mouse and
keyboard (Fig. . This indicates that the RGB channels have influenced the
temperature estimates, as both modalities are optimized within the same MLP.
Similar renderings for all ten datasets are shown in the supplementary material.

In Fig. [f] we visualize the per-pixel absolute errors in temperature prediction
and observe highest errors for all models at the edges. This is due to the ghosting
effect available in thermal images where the edges are blurry. We also can observe
that for Building Spring (top-left), the sky has more errors than the Exhibition
Building scene (top-right). That is due to having a mix of clear sky and cloudy
images on the Building Spring scene, as opposed to just a cloudy sky in the
Exhibition Building scene. The inconsistencies of thermal radiation measured
from the sky leading to less accurate thermal predictions. Overall, ThermoNeRF
exhibits the best thermal prediction results while Nerfactot, shows the worst
thermal predictions. Nerfacto,gh ¢, shows higher errors across the scenes than
ThermoNeRF due to the contamination of the thermal information by the RGB.
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Fig. 4: Comparison of examples of thermal and RGB renderings of unseen poses for the
scenes Building Spring, and Raspberry Pi. Note that Nerfactoi, has no RGB output.
ThermoNeRF is closest to ground-truth tglermal images, while preserving RGB quali‘lc‘y.
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Fig. 5: Per-pixel absolute errors in temperature estimation for renderings of unseen
poses for two outdoor scenes: (top) Building Spring and Exhibition Building and two
indoor scenes: (bottom) Double Robot and RaspberryPi. We observe fewer errors on
ThermoNeRF than the baselines. Note that Nygp+¢n stands for Nerfactorgb+tn-

5 Conclusion

In this work, we propose ThermoNeRF, a novel multimodal approach leveraging
NeRF for rendering novel RGB and thermal views of a scene. We curated a
new dataset specifically designed for RGB-+thermal scene reconstruction and
our experimental findings show that ThermoNeRF excels in synthesizing ther-
mal images, achieving an average MAE of 1.5°C, representing more than 50%
improvement over a baseline concatenating the RGB and thermal modalities.
Moreover, a compelling avenue for future research is exploring the adaptability of
ThermoNeRF across different frameworks such as recent anti-aliasing NeRF vari-
ant, ZIP-NeRF . Another potential limitation of our method is its dependence
on paired RGB and thermal images. Collecting paired RGB-thermal images can
pose practical challenges since careful calibration of the cameras is needed to
align these modalities accurately. Future work will focus on developing methods
able to train ThermoNeRF using unpaired RGB and thermal image data.
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